
AD—A0b7 b~ 6 ILLINOIS I1~IV AT LMBANA—CHAMPAIGN COORDINATED SCIENCE LAB FIG 5/1
COISJTER STSTEM D€SIGN USING A HIERARCHICAL APPROACH TO PERFORM CTC(UP

ISCLASSIF lED
OCT 7 7 B s U M A R DAA ROY— 72— C—O259

1 fl_
‘

I__Fir _

~U1 I in’

F

i . ~~
I~Il~ ~ 2.5 b

_ _ _ _

L~ ~ 32 2.2

~H~ J

I . I ~ ~I2.O

1iIII~
8

I .25 IIIll~ QIn~
•6

!vlH I~UL~ ~ I-~E , A~) [_ 1J~ k~ N t i H A R T
i i i i . , . ’.

_ LEVELS~I REPORT R-799 OCTOBER~ 1977 UILU- ENG 77—2246

‘
~~~~~~ ~~~ COORDINA TED SCIENCE LABORA TORY

•
V

I
*
V COMPUTER SYSTEM DESIGN
1 USINGA HIERARCHICAL
I APPROACH TO

PERFORMANCE EVALUATION
I

BALASUBRAMANIAN

I
I2~~~~
T ~~~~~~~~L ~~~~~~r D D C

i1~L~fE

r~~ ~~~ 
i~~. 027

DISTIUBUT!Ofl STATEKENT ii]
P Apptovod tot public zeIeoi~

~~~~~~~~ U~~~~~d

UNIVERSITY OF ILLINOIS - URBANA , ILLINOIS

huLL
— —

- ~~~~~~~~~~~~~~~~~~~~ .. r- .—~~~ -- --.., -~~~~~

-
-

UNCLASSIFIED - - — • - -- - - - — •

~S.ECURlTY CI.A$SIFICATIOH QF. TH .LS DAO~ (171.n bat. Ent.red~ . ‘ ‘
.

~~~

. . 
- .

~~ Th,~~~~.’. ~~~~~~~~~~~~~~~~~~~~~ OA I~~~ 
READ INSTRUCTIONS

riErun , I#~J’ VMLLJ’~ I ~ I ~~~~ ~ BEFORE COMPLETIN G FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

‘V ~ ~~~~~~ ~~ Subtle:.) s. TYPE OF REPORT 6 ~ c~~oo COvERED

COMPUTER SYSTEM DESIGN USIN G A HIERARCHICAL Technical Report
APPROACH TO PERFORMANCE EVALUATION C. PERFOR~~~~~~6~RG. REPORT NUMBER

,~~~

__________________________________________________ 
R—799; _ UILU—ENG_ 77—2246

~~. AUTHOR(.) C. CONTRA CT OR GRAN T P4UMBER(.)

DAAB—0 7—72—C —0 259 ;Balasubramanian Kumar MCS 73—03488 AOl

B. PERFORMING ORGANIZATION NAM E AND ADOPEfi~~ 10. PROGRAM ELEMENT~ PROJECT , TASK
Coordinated Science Laboratory ‘ AREA C WORK UNIT NUMBERS

University of Illinois at Urbana—Champaign
Urbana, Ill inois 61801

II. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

October , 1977Joint Services Electronics Program 
~~~. NUMBER OF PAGES

__ 161
IS. MONITORING AGENCY NAME & AODRESS(11 dill.r.n t f rom Controlling Oltic.) IS. SECURITY CLASS. (of fit! . rop~rt)

UNCLASSIFIED
5.. OECLASSIFICAtI ON/O OWNG RA OING

SCHEDULE

IC. DISTRIBUTION STATEMENT (of title Report)

Approved for public release ; distribution unlimited.

17. DISTRIBUTION STATEMENT (of It. .b.t,.cl entered In Block 20, II dill .r.nt from Report)

t
1$. SUPPLEMENTARY NOTES

15. KEY WOR DS (Continue on r.v.... aid. If necessary ~~d Id.ntl fy by block numb.,)

Design
Hierarchy
Modeling
Performance Evaluation
Opt imization

~~° ~~~~~~~~ (Conh1fh~~ ~ ~~~~~~~ ~ ~ ~~~~~~ ~~ ~~~~ by block numb.r)

-~~tie concept of a hierarchy of system models for the performance evaluation
of computer systems is introduced. The characteristics and construction of
such a hierarchy are discussed. Since it consists of models that span a wide
range of complexity and cost , such a hierarchy is a very useful tool in the
cost—effective design of computer systems .

A procedure that uses such a hierarchy in computer system design is
developed. The procedure uses the hierarchy to trade off cost and accuracy
of system perform ance predictions. The viability and usefulness of the

L DD F ORM 1473 EDITION OF I NOV CC S OBsoL ETE1 JAN 73 UNCLASSIFIED
-

~~~~~~~~~~~~~~~~~~~~~~~~ . ... — 
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OF ?M1$ PAG E (B~t.R D.e. Sntar.d)


-~ UNCLASSIFIED
SECURITY Cl. A1$IPICATIQH OP THIS PA5I(W7s~~ bell Relived)

I
I

20. ABSTRACT (con tinued) I
~~~

procedure are demonstrated by applying it to the optimization of the
- ‘ architecture of a complex computer system — the CPU—memory subsystem

- of the IBM System 360/Model 91. In most of the experiments conducted ,
the procedure converged , if not to the exact optimum, at least to
within a very near region of the optimum. A sensitivity analysis
procedure is then used to identify the exact optimum, as well as to -

-
. determine the sensitivity of the objective function to changes in the

system parameters. The efficiency of the overall procedure is shown
to be considerably greater than that of the worst—case approach to system -

desig~~~~~- -~ 
-

~~~~~~ conclusions are drawn about this class of single stream,

~~-t1igh].y pipelines, CPU—memory architectures. Extensions of the hier—
• archical approach to performance evaluation are proposed.

4

.1

F p

LLA~~
UNCLASSIFIED

~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ Del. Relive d) -


LEVEL ~i .~. ~ - - - ; , -.:~~.~ T

b~ I /
-

J~. ~I. -
.
~~~ 

19~ 2? i~~~~ENG !z 224~ )

/
6 ~OHP1JTER ~~ STEM .~ESIGN USING A UERARCHICAL —

- 
.

~ 
)PPROACH TO PERFORMANCE EVALUATION ,

- • 

- 

by

-/
- BALASUBRAMANIAN/1(UMAR /

_ __j ( ~~~~ ,—--- - . - - -
- :  

~~ - ~~~~~
-
~~
-— -

~~~ 
- -

—-

.

- - ,J ~~~~~~’ -~~ - .—~~~~~~
-
.‘

- -~~ -~ 1 -—Th,
~~

/ .. - -

7/ ! ~~~~~~~~~ 1
/ .

~~~~
) ~~~ / - .~~~ 

-

-~~~~~~ - ~~~~~- - / / — r —
This work was supported in part by the Joint Services Electronics

- . Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB—07—

72—C— 0259 and in part by the National Science Foundation Gran t under

MCS 73—03488 AOl.
- _~~~~~~~~~~~~~~~~~~~~~~~~~~~~

( I - ;( j~~~it  0 7 — ? :. c —  ~~~~~~~ / ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ /

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

- I
-- D D C

1Pflt117 
~~U AUC 18 1978

Approved for public release. Distribution unlimited. 
-

I



~~~TT
II-

~H

H ’
I

CC~1P1JTER SYSTEM DESI~~ USING A

HIERARCHICAL APPROACU TO PERFORMANCE EVALUATION

BY
V

BALASUBRAMAN IAN KUMAR

-

-

~~ B.Tech., Indian Institute of Technology, 1973
- M.S., University of Illinois, 1976

• - THESIS

Submitted in partial fulfillment of the requirements

-
for the degree of Doctor of Philosophy in Computer Sc ience

- in the Graduate College of the
- . University of Illinois at Urbana-Champaign, 1978

Thesis Adviser: Professor Edward S. Davidson

Urbana, Illinois

- . - -

CC~PUTER SYSTEM DESIGN USING A
HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

Balasubramanian Kumar , Ph.D.
Coordinated Science Laboratory and
Department of Computer Science

University of Illinois at Urbana—Champaign, 1978

The c- ncept of a hierarchy of system models for the performance

evaluation of computer systems is introduced. The characteristics and

construction of such a hierarchy are discussed. Since it consists of

models that span a wide range of complexity and cost, such a hierarchy is

a very useful tool in the cost-effective design of computer systems .

A procedure that uses such a hierarchy in computer system design

is developed. The procedure uses the hierarchy to trade off cost and

accuracy of system performance predictions. The viability and usefulness

4 of the procedure are demonstrated by applying it to the optimization of

the architecture of a comp lex computer system - the CPU-memory sybsystem

of the IBM System 360/Model 91. In most of the experiments conducted ,

the procedure converged, if not to the exact optimum, at least to within

a very near region of the optimum. A sensitivity analysis procedure is

then used to identify the exact optimum , as well as to determine the

sensitivity of the objective function to changes in the system parameters.

The efficiency of the overall procedure is shown to be considerably greater

than that of the worst-case approach to system design.

Some conclusions are drawn about this class of single stream,

highly pipelines, CPU-memory architectures. Extensions of the hierarchical

approach to performance evaluation are proposed.

- -- .-—

~ -

iii

ACKNONLEDG€NT

The author is struck by a strange feeling of inadequacy in trying -:

to acknowledge Professor Ed Davidson ’s contribution to this work.

Professor Davidson ’s guidance , fr iendship, encouragement and genuine

personal warmth render conventional expressions of gratitude woefully

-

- inadequate. The author can only hope that some day, he himself will be

able to contribute so much to someone else ’s work.

The author thanks all his colleagues and professors in the

Department of Computer Science and the Coordinated Science Laboratory ,

especially Professor Dave Kuck , Janak Patel, Ravi Nair, Joel Liner,

Trevor Mudge and Alan Cant for contributing so much to his education.

For making his stay in Urbana-Champaign so much fun, the author

is deep ly indebted to his friends Arvind and Sashi Parthasarathi.

Finally, the author thanks Ms. Hazel Corray for her impeccab le

typing, attention to detail and cheerful assistance.

iv

TABLE OF CONTENTS
CHAPTE R Page

INTRODUCTION 1.

1.1 Problem Statement and Objectives 1.
1.2 Background 2
1.3 Structure of the Dissertation 3

2 A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION 4

2.1 Introduction 4
2.2 Performance Evaluation Concepts 4
2.3 System Modelling Concepts 5

2.3.1 Types of Models 5
2.3.2 Validity of Models 6
2.3.3 Other Characteristics of Models 6

F 2.3.4 Overview of the Model Building Process 7

2.4 A Hierarchy of System Models 8

2.4.1 Motivation Behind the Hierarchy Concept 9
2.4.2 Characteristics of the Hierarchy 10
2.4.3 Construction of the Hierarchy 11

a 2.5 System Optimization Us ing the Performance Model
Hierarchy 12

3 MODELS FOR A C~~1PLEX CONPUTER SYSTEM : THE IBM 360/91 15

3.1 Introduction 15
3.2 Description of the 360/91 15

3.2.1 Pipelining and Parallelism in the 360/91 15
3.2.2 CPU-Memory Architecture of the Model 91 17

3.3 Overview of the Model Hierarchy for the System 23
3.4 A Control Stream Model of the System 24

3.4.1 The Control Stream Concept 25
3.4.2 Assignment of Logical Resources in the Model 26
3.4.3 Control Stream Generation 27

- 3.4.4 Terminology Used in the Model Description 31
3.4.5 Resources and Buffers in the Model 33
3.4.6 Control Flow of an Instruction Process 34
3.4.7 Control Flow of an Operand Process 42
3.4.8 Control Flow of a Memref process 43
3.4.9 Approximations Made in the Model 44
3.4.10 System and Model Parameters 45
3.4.11 Performance Measurements Using the Model 46

v

CHAPTER Page

3.5 An Analytical Performance Model of the System 47

3.5.1 Introduction to Regression Theory 48
3.5.2 The Analytical Model of the System 50

4 SYSTEM OPTIMIZATION USING THE PERFORMANCE MODEL HIERARCHY 53

4.1 Introduction 53
4.2 System Optimization Objectives 53
4.3 Application of the Hierarchical Approach 53

4.3.1 Roles of the Models in the Hierarchy 54

4.4 The Optimization Procedure 55

4.4.1 Definitions and Overview 55
4.4.2 System Parameter Metrics and a Multi-

dimensional Grid in the Space 58
4.4.3 The Initial Calibration Set 58
4.4.4 The Movement Rule 60
4.4.5 The Stopping Rule 65
4.4.6 Heuristic Algorithms for Recalibration

of the Analytical Model 65
4.4.7 Bounding the Error of the Analytical Model 72
4.4.8 Sensitivity Analysis 76
4.4.9 Efficiency of the Optimization Procedure 77

4.5 Adaptation of the General Procedure to the Case-Study.... 79

4.5.1 Continuous vs. Non-continuous System Parameters 79
4.5.2 Adaptive Metric for the mc Dimension 80
4.5.3 Feasibility Checking 82

5 DESCRIPTION OF EXPERIHENTS AND ANALYSIS OF RESULTS 86

5.1 Introduction 86
5.2 Software Used 86

5.2.1 The Control Stream Model 86
— 5.2.2 The Analytical Model 87

5.2.3 The Local Optimization Procedure 87

5.3 The System Cost Model 87
5.4 Traces Used in the Experiments 89
5.5 Discussion of Optimization Experiments 91

5.5.1 An Iteration of the Global Optimization
Procedure 91

5.5.2 Experiments on EIGEN 95
5.5.3 Experiments on GAUSS 111
5.5.4 Experiments on ERROR 119

-
_ _ _ _

vi

CHAPTER Page

5.6 Efficiency of the Optimization Procedure 126
5.7 Some Architectural Conclusions 129

5.7.1 A Final. Design for the System 131

6 CONCLUSION 133

6.1. Summary of the Research 133
6.2 Accomplishments of the Research 133
6.3 Suggestious for Further Research 134

6.3.1 Shortcomings of the Optimization Procedure
and Suggested Remedies 135

6.3.2 Further Research into the Hierarchy Concept
and General Issues 138

APPENDIX A 141

APPENDIX B 143

LIST OF REFERENCES 159

VITA 161

4

1

CHAPTER 1

INTRODUCT ION

1.1 Problem Statement and Objectives

Computer systems can be viewed from three different aspects:

1) Structure

2) Function

3) Performance

The tasks that the system is expected to accomplish, constitute its function.

Structure refers to the organization of the system components, and perfor-

mance is a measure of how well the system accomplishes its function. Thus

a well-designed computer system is one whose structure is such that it

accomplishes its function to meet some performance and cost constraints.

It is thus very important to understand the relationship between the per-

formance of a computer system and its structure and function. This is true

both during the design phase of a new system, as well as in the re-con-

figuration of an existing system to optimize its effectiveness.

In this dissertation , we will present a hierarchical approach to

the performance evaluation of computer systems. We will show that a

hierarchy of system performance models is a cost-effective way of examining

computer system design questions. We will lay down the characteristics that

such a hierarchy should possess. We will then develop a procedure for the

use of such a hierarchy in the design of a computer system. The principles

embodied in our approach will be exemplified by a case-study of the design

of a computer system.

In earlier work fKLJM76a, 76b], we developed a technique for

modelling a system, called control stream modelling . This is an effective

~

2

technique for the performance evaluation of complex computer system~ by

simulation. In this dissertation , we will use such a control stream model

in our case-study.

1.2 Background

Performance evaluation of proposed computer systems , for the

purpose of examining design questions , is not a new concept. For example,

Ballance et al. [BA162] describe a simulation model that was used in the

design of the look-ahead unit of the IBM Stretch system. Boland et al.

[B0L67) discuss a simulation model used in designing the memory unit of

the IBM System 360/Model 91. However , these were used only to examine a

few very specific system design questions. We know of no work in the field

that looks at major overall architectural design questions , or a cost-

effective tool for examining them. It is our belief that interrelationships

between system design parameters can be understood , and real tradeoffs made,

only when global , many-parameter models of the system are constructed and

analyzed.

Hierarchical approaches to modelling have also been examined in

the past, [SEK72 , BRO72 , BHA76]. However,these have been concerned with the

reduction in the complexity of analytic models , by structural decomposition

of the system model to form sub-system models that can be analyzed inde-

pendently. Thus all the models in the hierarchy use the same modelling

tools. We believe that ours is the first attempt to bring together a variety

of state-of-the-art modelling tools, whose intrinsic range of cost and

complexity make them very sui~ab1e for use in a hierarchy. We also believe

that analysts in the past , have not laid enough emphasis on proper cali-

bration and validation techniques for models. This dissertation will deal

in detail with such concerns.

_

I
3

1.3 Structure of the Dissertation

in Chapter 2 , we introduce some basic performance evaluation and

modelling concepts. We then discuss the motivation behind the hierarchical

approach to system modelling. The characteristics and construction of such

a hierarchy are then described. Finally , we provide an overview of a system

optimization procedure that uses a hierarchy of system performance models.

Chapter 3 introduces the system chosen for the case-study - the

CPU-memory subsystem of the IBM 360/91. After a short description of the

system architecture , the hierarchy of models used to analyze its perfor-

mance is described. The two models used are a control stream model, alluded

to earlier , and an analytical model built by regression techniques . The

models are described in some detail in this chapter.

In Chapter 4 , we develop a procedure for optimizing a system

design, with respect to some objective function that includes system per-

formance as a component. Using the hierarchy in the procedure , ensures

accuracy of performance predictions , and convergence to an optimum system,

and at the same time renders the procedure cost-effective. We also attempt

to bound the approximation error of the hierarchy, and to estimate the

efficiency of the optimization procedure as compared with some simple bench-

mark procedures.

Chapter 5 discusses the results of applying the procedure to the

system chosen as a case-study, for three program traces. The procedure is

shown to converge, if not to the exact optimum system , at least to within

a near region of the optimum. Sensitivity analysis then identifies the

exact optimum besides determining the sensitivity of the objective function j
to system paramter changes near the optimum.

Chapter 6 summarizes the research and offers suggestions for

further research.

~

4

CHAPTER 2

A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

2.1 Introduction

In this chapter , we first introduce some basic performance

evaluation and system modelling concepts. We then attempt to classify

models with respect to a variety of features. The hierarchical approach

to performance evaluation is introduced and the construction and charac-

teristics of such a hierarchy are discussed. Justification of a hierarchy

of models as a powerful tool for the cost-effective design of computer

• systems is then given and an overview of a procedure that uses a hierarchy

to optimize the design of a computer system is presented.

2.2 Performance Evaluation Concepts

The performance of a computer system is defined as the effective-

ness with which the system handles a specific application. Various measures

can be used to describe the performance of a computer system , one of the

most co on being the system throughput , i.e., the number of tasks processed

by it in unit time. Once a measure has been chosen as the one that des-

cribes the system performance most satisfactorily, performance evaluation

can be viewed from two different aspects:

1) The determination of the performance function F, such that

Syc.tem performance = F(av1,... av , wv1,... W V)

where the av
i
are the system architecture parameters, and the wV j

are the

system workload parameters.

2) The estimation of values of the above performance function

for a specific set of system parameter values

(av 1,~~•~ avm, WV 1,... vv~).

—

~

-. — - ~~~-~---—~- ~- - - •----- ---- -~~ -~~ — --~~~- -- -~ - -

2.3 System Modelling Concepts

Any analysis of a system is only an analysis of a model of the

system. This is true of system performance evaluation , which is an analysis

of one aspect of the system - its performance. A model of a system can be

defined as an abstraction that contains only the significant variables and

relations of the system. We now discuss a few aspects of system modelling.

2.3.1 Types of Models

Models used for system performance evaluation can be divided

into three broad classes (SV076]:

a) Structural Models describe aspects of individual system

components and their interactions. They usually serve as the basis for

more abstract models , by providing an interface between the real system

and the more abstract models. An example is a block diagram model of a

system in which each block is a system component.

b) Functional Models define the operation of the system such

that the model can be analyzed mathematically or studied empirically.

Examples include queueing models that have mathematical solutions for

the performance measures of interest, and simulation models that provide

emp irical evaluations of performance measures.

c) Analytical Performance Models formulate the dependence of

performance on the system workload and architectural variables. Such

models are usually functions that are fitted to data obtained from

functional models.

Some models fall across the above classes as we will see in

the next chapter.

- ---—-—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



6

2.3.2 Validity of Models

A model is said to be valid when the performance measure values

generated by it agree with the actual observations of system performance

to within a desired range of accuracy. The range of validity of a model

is the region in the multi-dimensional space of system parameters , over

which the model is valid . Usually the range of validity and the accuracy

of a model have to be traded off.

There are varying degrees of rigor to the validity of models

IZEI7S). At the least rigorous level, a model is replicatively valid, if

it matches the performance values already acquired from the real system.

— At a more rigorous level, a model is predictively valid, when its

predictions of performance are corroborated by observations of the

system. At the most rigorous level, a model is structurally valid if

it not only reproduces the observed system behavior , but truly reflec ts

the way in which the real system operates to produce this behavior.

The choice of the rigor with which a model is judged for

validity , depends on the specific purpose that it is being used for.

2.3.3 Other Characteristics of Models

Besides validity , some other aspec ts of models tha t we will be

interested in, are :

1) Cost: This is usually tied to the computational complexity of

the model, i.e., the work involved in using the model to make a single

evaluation of system performance. Thus simulation models are usually

quite expensive in their computational demands , while mathematical models

such as queueing models and analytical performance models are quite

inexpensive.

LA 
-



7

2) Amount of information obtainable from the model: Very often ,

the analyst is interested in more than a single measure of system per-

foruiance. For example, in a system which is an interconnection of

resources , resource utilization is as important a measure as system through-

put, since it can point to system bottlenecks. Models with higher struc-

tural validity tend to be capable of yielding more information than models

of merely predictive validity. Further, the detail with which such infor-

- 
- 

mation is available varies considerably . Thus, a queueing model may attempt

to yield accurately only the average utilization of a resource , while a

simulation model can yield an entire histogram of resource utilization.

2.3.4 Overview of the Model Building Process

Regardless of the type of model chosen, there are certain

co on features in the process of building up the model as a tool for

a performance evaluation. The following are some of the basic phases of the

model building process:

a) Choice of experimental frame: The experimental frame charac-

terizes a limited region of the entire sys tem parameter space , in which the

system is to be modelled. All the aforementioned characteristics of a model

are only with respect to the experimental frame for which the model is

constructed. Thus a model. may be invalid in an experimental frame other —

than the one chosen, but only its validity in the chosen frame is of

importance.

b) Model calibration: Calibration is the process of estimating

the parameters that describe the model in the experimental frame. For

example , the parameters of an analytical model that expresses performance

as a linear function of the system parameters , 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-~~
-

~~~~~~~~~~~
-

~~
-— - -



~~~~~~~~~~~~ -~~~~ --~~~~--~~~ ~~~~~~~~~~~ -~~~~ --- -~~~~~~~~ - -

8

P= ~~ + E
~j
.av

i + E V.•wv .
° i=l j=l ~

are the coeff icients ~~(i=O throughm) and ‘l~~(J = l through n). The

calibration of such a model may involve the fitting of a linear regression

equation to observed values of system performance for varying values of the

system parameters.

c) Model validation: Once a model has been calibrated, it can

be used to predict system performance. Validation is the process of

establishing the validity of the model by comparing model predictions of

performance with observations of system performance. If the validity is

satisfactory, the model predictions in the experimental frame will be

accepted. If the validity is poor , the model may have to be recalibrated

with the new observations of performance. Calibration and validition for

any mode]. can simultaneously improve to a point; beyond that point , they

may have to be traded off. Thus, calibration using data from a larger

number of observations than the order of complexity of the model may cause

poor overall validity in the region. On the other hand, the same model may

yield an acceptable degree of validity for more local sub-regions.

d) Prediction using the model: Once a model has been calibrated

and validated in an experimental frame, it can be used to predict system

performance in that frame. However, if the experimental frame should ever

change , the process of calibration and validation will have to be repeated

for the new frame .

2.4 A Hierarchy of System Models

We now introduce the concept of a hierarchy of system models for

performance evaluation and discuss the motivation behind the concept and

9

the characteristics that a hierarchy needs to satisfy to be a cost-effective

design tool. We also discuss procedures for the construction of a hier-

archy.

2.4.1 Motivation Behind the Hierarchy Concept

- I We will assume that a computer system analyst is evaluating the

performance of a computer system for one of the following reasons :

a) To design a computer system which is the optimum system

for some objective function that includes system per-

formance as a component.

b) To optimize an existing computer system for an objective

function as in (a).

In either event, the analyst is interested in obtaining an optimum system

configuration.

Since optimization procedures usually use an iterative scheme to

converge to the optimum, a number of evaluations of the objective function

will be called for. This requires that the performance component of the

function be evaluated with minimum cost , so as to keep the cost of the

optimization procedure within reasonable bounds. On the other hand , the

performance evaluation must be sufficiently accurate to meet the accuracy

demanded of the optimization procedure. A performance model hierarchy

provides a cost-effective trade-off between accuracy and computational cost ,

in much the same way that a memory hierarchy is a cost-effective tradeoff

between memory access time and cost.

Further , performance information of varying levels of detail is

needed at different stages of the system design process. Thus at the initial

stages of design, crudely derived performance information can be used .

Later , as the major design features are closer to convergence, more detailed

_ _ _ _ _

10

— and accurate performance information will be needed. A performance model

hierarchy, as def ined below , is compatible with this need.

2.4.2 Characteristics of the Hierarchy

The hierarchy of performance models will have the following

characteristics:

The low end of the hierarchy will contain models of high struc-

tural, and consequently high predictive, validity . These models tend to re-

semble the resource configuration of the system. It is expected that they

will have a broad range of validity in the system parameter space and that

they are capable of yielding detailed performance information of great

accuracy. The price to be paid for these desirable qualities is in the

high computational demands of these models.

The high end of the hierarchy will contain models of only pre-

• dictive validity and their range of validity in the system parameter space

is much more limited. The performance information that they yield generally

ha3 less accuracy than the low level models and is apt to be of a suzmnary,

i.e., less detailed, nature. However , they have the advantage of being very

much less demanding in their computational requirements.

Intermediate levels of the hierarchy will have intermediate values

of these characteristics. Thus travelling up the hierarchy, one sees models

that have:

1) Less structural validity

2) More limited range of validity

3) Less detailed performance information

4) Less accura te information

5) Lower computational requirements.

- - - ~-~~~~-

11

In terms of the types of models described in Sec. 2.3.1, there will be

structural models at low levels, functional models at intermediate levels

and analytical models at high levels of the hierarchy.

2.4.3 Construction of the Hierarchy

The actual models themselves must be chosen from the state-of-the-

art modelling tools available. Thus a typical 3-level performance hierarchy

may include a simulation model at the low level, a queueing model at the

intermediate level and an analytical model at the high level.

At each level, model calibration will be done using only the

performance information of models lower in the hierarchy . Since the model

information content increases as we go down the hierarchy , the information

obtained from lower level models should be sufficient to calibrate higher

level models. Furthermore, calibration may cause a degradation in accuracy.

• Thus to achieve a certain degree of accuracy for a model, one must use models

of higher accuracy to calibrate it. Using only lower level models for cali-

bration ensures this, since accuracy increases as we go down the hierarchy .

The calibration procedures will obviously be tailored to the models involved

in the calibration.

When the hierarchy is being used to optimize an existing system ,

the hierarchy can be constructed in a bottom-up fashion since the structural

information needed to construct the lower level models is available. How-

ever, when the hierarchy is to be used in the design of a system, this

information is ~ot available and the construction may have to start at

intermediate levels of the hierarchy. For example , an analysis of queueing

models of various server configurations can be used in the initial stages to

decide the gross structure of the system. As the structure begins to emerge ,

low-level models can be constructed to examine finer structural detail.

-
~~~~~~~~~-~~~~~~~~~~ - --~~ -~~~~~~~~~~



- ~— -

12 
- -

2.5 System Optimization Using the Performance Model Hierarchy

We now outline a procedure for cost-effective use of the perfor-

mance hierarchy in system optimization. We assume that the system is to be

optimized with respect to some objective function that has system perfor-

mance as a component.

Figure 2.1 is a flow chart depicting the optimization procedure.

The salient features of the procedure are :

1) The cost of the procedure is kept down by using a high-level model

for performance prediction in the iterative procedure that searches for the

local optimum.

2) However, the accuracy of the procedure is ensured by the validation

check on the high-level model after each prediction of the local optimum.

If the check fails , the more accurate low-level model is called at the

newly predicted optimum, and the extra information is used to re-calibrate

the high-level model in an experimental frame around the new point.

3) After the validation check has proved successful, an analysis is

conducted to determine the sensitivity of the objective functior. to changes

in the system parameters around the optimum. This is needed for two

reasons :

a) To locate the true optimtun in the local region, since the

predictions of the high-level model are accurate only to a

certain degree.

b) To establish the relative importance of the various parameters

around the optimum.

~



13

Choose
initial
experimental
frame

Run LLM for an
initial set of
points in the
frame. Choose
initial reference
point

• z

Calib rate HLM
at the referencet
point j
_ _ _ _ _ _

.3 [using ~~~optimize the
system design aI.M ~Ugi~-leve L ~todeL

LI~f~ Low-leve l ~!odel

— _____________ 
cal ibrated at Yes - I

.3 the p redicted
Y optimum _______________

Run LL’f at I ? Sensitivity
predicted opt imum. ~ analysis
Choose it as the
new reference Point.]

_________ 
Need

k No to examine Yes
new frame ?

Stop

~D— 5?44

Figure 2.1. System optimization procedure.

_ _  

-- --



14

Too high a sensitivity to some parameter, may lead the analyst to decide

to explore another experimental frame.

In Chapter 4 , we discuss such a procedure tailored to study a

- specific system in detail, touching on aspects such as efficiency and error

bounds of the procedure. 

--- - ~~~--~ -- - -—~~~~~~~~~~~~~ --—------ - ----~- -— -
~~~~~~~~

- - .
~~~~~~~

--. -
~~ ~~~~~~~~~~

—--
~~~

-
~

--

15

CHAPTER 3

MODELS FOR A COMPLEX C OMPUTER SYSTEM : THE IBM 360/91

3.1 Introduction

As a case-study of computer system design using the hierarchical

approach to system performance evaluation, we chose the CPU-memory sub -

system of the IBM System 360/Model 91 as a base. A hierarchy of models

was built to evaluate its performance, as a function of some chosen system

parameters. The hierarchy was then used to arrive at a system design, in

terms of the chosen parameters, that had the optimum cost/performance value .

In this chapter , we describe the system and the models in the hierarchy .

3.2 Description of the 360/91

The stated objective of the Model 91 was to attain a performance

greater by one or two orders of magnitude over the IBM 7090 [AND67a}. Since

circuit and hardware technology advances could provide only a fourfold per-

formance increase , architectural advances were expected to provide the

rest of the performance improvement.

3.2.1 Pipelining and Parallelism in the 360/91

The outstanding feature of the Model 91 was the extensi- e use of

pipelining and parallelism throughout the system. —

Pipelining is the technique by which the hardware along a processing

path is sp lit up into a number of segments with temporary storage between

them. Then when an instruction proceeds from one segment to the next, a

succeeding instruction is allowed to use the first segment, even though the

firs t instruction has only bare ly begun to be processed. Thus, the processing

rate is determined , not by the time to traverse the entire processing path ,
—

but by the time spent in each segment (see Figure 3.1). The instruction

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-_-~~ : -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - ~~--—~~~~--- - -—

16

a

~~~~I.,

41

0I

c

~~

— C

-

.

U
~~ 0

~~. VZ/////A~~ 1
4 T 0 ~~~~~~~~

v;. -! ~~~~~~., 2 c a ~~~ J o

a to
• 0 0 .2

T ~3 -I- i .2
—2 U

41 41 4 n.
C C

5.
* ., U 5)5) I~~~~ -~~

-~ 0
5) 4 C

11~~1
I P-

~i ~25) U

L -~~~~~~~~—-~~~~~~~~~~~~-~~~~~~~~~~~~~—

-
- processing function~ of the 91 were split into the segments shown in Figure

3.2. Thus it is possib le to enter instructions into this pipeline once every

clock cycle, this cycle being 60 nsec.

Parallelism involves the replication of often used hardware units,

as well as the possibility of simultaneous use of dissimilar hardware units

by different instructions. In the Model 91, the execution function is

divided between two separate units - for fixed and floating point instructions,

respectively. Further the floating point unit has two separate sub-units - an

add unit and a multiply/divide unit. Thus, instructions of these three classes

can be executed in parallel.

3.2.2 CPU-Memory Architecture of the Model 91

The organization of the system (see Figure 3.3) will be des-

cribed under the following division of functions :

1) The instruction unit

2) The execution units

3) The memory unit -

4) Buffering in the CPU.

3.2.2.1 The instruction unit

Instructions are pre-fetched from memory and stored in a 64 byte

instruction buffer. Pre-fetching buffers the instruction unit against

unpredic table memory delays. The instruction unit extracts instructions

from the instruction buffer at the rate of one every clock cycle . In

the next cycle , the instruction is decoded by the decoder . If it is a

fixed or a floating point instruction , it is dispatched to the appropriate

execution unit on the next cycle. Concurrently with the dispatching of

the decoded instruction , if the instruction needs an operand from memory

-~~~~~~--- - - --- .-- - -- - - .~~ -- - - - -.- --
~~

- - . - -- .~ - - - - - - - —~~~~~~~~-~ --~~ --~~~ - -

I ~~~

-

~~

--

~~ ~

.— — - - - - - - - - - - - --- - ----- -- ,— - --—---

18

.

0, ‘)~~ I — —
— t~~ I

— _ _ _

c&~~~~

eä~~ ._l
— __ - . 00

I;
)

— r ~~~~
~~;:~~~~~~= g

— z ~
~~~~~ 4 1 U  29 U

—
~~~ 

•,
• ~~~~~~~

gt •!~, •1.1I_ 5).z — ç
~~~~ 

.
~~~.- 5.

L. I~~~<~ 2~~
o.Z

— !~~~ ~~~~~~~~~~~~ ~~~~
00

5)U 1 z ~~~m to z — —I .9~~~~ ~~~ l~)
I Z~~~~t 2~~~ U.~~ 0

—
— ____

‘4.’

4 l g g —4
- • l c &

- _ _

ø z . , C~~ -~~9
~~O 5)
5)’ . ‘4.4

~~~~~~~ 
I C~~~~~ 0

W’.J
— — 

I
~

-— —
.~~ = 0

-9 -4
U

— S
— 

_
~ S

U

— - —

5)
C I— I) 00

I -2
I.e

— I ~~: ~~~~2._

~1~~ -4-—
I ’ 41 C

00



19

—

I 
_ _ _

I .~~~~~0e )
I ~~~~~~~~
I u.a_om __
I ‘I,

U C

SI ~~~~~~~~~~ 
-~~~~-~~ .5) 

0
= — 0 ~~ ~~~U_

I 0C .~~~~

1 H I I t I I I 1 ’~
°
~~~ 

~~uJ~~

I— - -I
— I ____

I

~~~I
- 

I
2 ~~~ c~4 I  .2U” 0 0  

~I U
S I 9 5 to
2 ~~~~.,.. ~lI 

~~~~~~~~~ ~~ 4) .4
2 I ~~ E _. t Z i j~~~~

I I
_ _ _ _ _

00
- ; —0

j
-0

~

0

I I —

- .J -~~

5) ‘a
CI

- - . T~~ S
C”

• 2 5) 4) 4
I’, u ..~~~~~— (>1• - C o~~~~—.

~ I I
1 ’ — 4 i

CI i 5) 41 .5) ~~

~ 1’
I

~~ I[i r
0— — I— ~~~- 2 1

— 1-—— .j ~
U.

I
~~~~ 

-

~~~

; 1-H

_ _ _

•

-
-

- Li~iLU!~!~: J
_

20

the address parameters (index register , base register and displacement) are

combined to compute the operand address, which is then sent to memory on

the next cycle , as a fetch request.

The instruction unit also executes branch instructions after

decoding them. Unconditional branches cause a switch in the instruction

— stream , and instruction fetching is done from the target of the branch.

If a conditional branch is encountered, and the data on which the branch

decision depends has not yet been computed , the CPU enters “conditional

mode”. Decoding and issuing of instructions continue along the path that

reflects the best guess as to the decision of the branch. When the branch

is finally decided , these instructions will be cancelled if the guess was

wrong, and activated for execution if the guess was right. For most

conditional branches , the guess is that it will not be taken. If, however,

• the target of the branch is back along the stream within 64 bytes of the

location of the branch, i.e., for program loops that fit in the instruction

buffer , the CPU enters”loop-mode” and assumes that the branch will be taken.

For further iterations of this program loop, the instructions will be held

in the instruction buffer, and need not be fetched from memory. To further

reduce the performance degradation due to a wrong guess, 16 bytes of instruc-

tion words are fetched from the alternate branch path and stored in a

separate buffer.

3.2.2.2 The execution units

As described earlier , concurrency of execution is increased by

having separate units for executing fixed and floating point instructions.

a) The fixed point unit: Within the fixed point unit, execution

proc eeds serially, one instruction at a time. Many of the instructions

require only one clock cycle of execution time.

_ _ _

21

b) The floating point unit (see Figure 3.4) is subdivided , for

further concurrency, into an add unit and a multiply/divide unit (AND67b].

The add unit is pipelined to start an add operation every cycle , and

requires two cycles to complete an operation. The multiply unit uses a

carry-save adder tree to perform a multiply in three cycles , and an

iterative Nevton-Raphson technique to perform a divide in 12 cycles. An

internal bus , the Common Data Bus, links these units , using the Toinasulo

algorithm (TOb~~7j. It correctly sequences dependent streams of instructions ,

but permits those which are independent to be executed out of order.

• 3.2.2.3 The memory unit

Core memory with an access time of 600 nsec and a cycle time

of 720 nsec was used in the 360/91. As the CPU clock cycle is 60 nsec ,

there is a wide disparity between the memory bandwidth and the projected

• CPU bandwidth. To increase the effective bandwidth of the memory unit , a

number of features were incorporated :

a) The memory was 16-way interleaved , i.e., it was split into

16 separate modules or banks, with addresses interleaved so that consecu-

tive addresses reside in consecutively numbered banks . Each bank can be

cycled independently, so that , at any given time, more than one bank may

be performing an access.

b) Incoming references fr om the CPU are buffered , if they

canno t be honored for any reason such as a bank confl ict, unavailability

of the data to be stored , or data dependency on a previous , uncompleted

reference. Thus requests can be sent to the memory unit at the rate of

one per CPU cycle.

- - _ _ -

-

22

I

I .‘5 .-i — —I — —0 0 4-
J ~~~~~~~~~~~~~

- - - ~~~~~ L~JT
•

_ _

_

(3 - -
~~~~~

.0 i2 ,~ .4
—~~~~~ 

— U
_ _ _ _ _ _ _  

4—..—
.

C .4
—5 .5) 4. •~~ to

,. ~~~ 00
O C I  

1.4
5)2 0

______  — U
0 

- —I
CI 0

~~ IS £4 U

I .52 0I j _ j U 0
0- {---

_ _  

_ _ _ _ _ _  

1~~ J~JJJf
U, 

_ _ _ _ _ _  1~-

~

-

~

- - -~~~~---~~~~ • --- -~~~~~~~~•~~~~~.



23

c) A check is made to see if an incoming fetch reference refers

to the same location as a previous reference that is currently being

serviced. If a match occurs, the second reference can be honored almost

at the same time that the data for the first reference is finally avail-

able. This is called the multi-access feature [B0L67].

3.2.2.4 Buffering in the CPU

Buffers in the system (see Figure 3.3) provide queueing which

smooths the instruction flow. They allow initial segments of the pipeline

to proceed with processing despite unpredictab le delays down the line due

to busy resources , data dependencies or memory accesses. As described

earl ier , the instruction buffer holds pre-fetched instructions for decoding,

and also holds small program loops in loop-mode. In the memory unit ,

buffers are provided to hold references delayed for any of a number of

• reasons. Branch target buffers hold instructions fetched from the alter-

nate path of a two-way conditional branch that has not yet been decided.

In the execution units , operation buffers hold decoded instructions

sent to them by the instruction unit. Operand fetch buffers provide storage

into which the memory returns operands, to be used by the execution units

when necessary. Operand store buffers hold operands sent by the CPU until

they are stored in memory.

Thus buffering plays an important role in ensuring autonomous

execution in the various functional units.

3.3 Overview of the Model Hierarchy for the System

We now outline the hierarchy of models used in the performance

analysis of the case-study system. The hierarchy consist of two levels: 



24

a) A control stream model at the low level

b) An analytical model at the high level.

The control stream mode l is a simulation model , that is driven

by a control stream derived from program traces. It is a hybrid between

• a structural and a functional model (see Sec. 2.3.1), in that its resource

configuration, while resembling that of the real system, is an approxi-

— 
mation of it. As such it has reasonably high structural validity, yields

accurate and detailed information, but is computationally demanding. It

should be pointed out that large studies of this kind should use a model

of even greater structural validity at the lowest level, i.e., without

some of the approximations that were incorporated in the control stream

model used in this research. However , for this study, the control stream

model is taken as the structural model for the system.

• The analytical model is a linear , first-order regression

equation, linking system performance , i.e., instruction throughput , with

the system parameters. It is predictively valid only in the limited region

of its calibration, yields values of only one performance measure , but is

trivial to compute.

3.4 A Control Stream Model of the System

In this section, we describe a control stream model of the IBM

360/91 CPU-memory system. This model is the low level in the two level

hierarchy of models used to study the system. Consequently its complexity

and computation time are significant. To predict system performance using

the model , a simulator of the model has to be built , and driven by control

streams representative of programs in a desired environment. The model

can be used to provide a wide variety of performance statistics of the system. 



25

The model described in this section is a simplification of an

earlier control stream model of the system, that is described in [KUM76aJ

and (KUM76bJ. The assumptions about the system that are reflected in this

model , are explained in Sec.. 3.4.9.

3.4.1 The Control Stream Concept

The simulator of a control stream model is not intended to per-

form any real computation. The sole purpose of the model is to provide

timing and resource usage statistics for typical system usage . Recognition

of this fact enables a significant reduction in model complexity , by the

introduction of the concept of a control stream.

In the real system, an instruction , while it is being fetched

from memory and processed by the CPU, traverses a flow path in the system.

This flow path through the system is different for different types of

• instructions. Moreover, in concurrent CPU-memory systems , the data that

is needed by an instruction will have its own independent flow path

through the system. Typically , both the instruction and its data traverse

their flow paths simultaneously.

The model of the system consists of resources which correspond

in some fashion to the resources comprising the real system. In the model ,

a unit of traffic , or process , is generated corresponding to the starting

of an instruction along its flow path in the real system. However , no

distinction is made in the model between the instruction flow and the data

f low caused by that ii~struction in the real system. The two taken together

form the control flow of that instruction and are reflected in the flow path

of the corresponding process in the model. Thus the instruction and data

streams in the real system are replaced by a control stream in the model.

•

~ 

•~~~~~~~~~~~~~~~~~~~~~~~ 



26

The traffic for a simulator of the model , is derived from a

program execution trace by one of the methods to be discussed in Sec~

3.4.3. During simulation, however , no attention is paid to the actual data

used or produced by the program. Thus the model will be concerned only

with the data flow path (inasmuch as it is a portion of the control flow

path) and not with the data itself. Since only timing statistics are

important, the processing of a traffic unit by a resource in the model

consists solely of occupancy of the resource by the traffic unit for the

characteristic period of time for that resource in the real system.

3.4.2 Assignment of Logical Resources in the Model

The model associates a logical resource with combinations of

various steps in the execution sequence of an instruction. The processing

time of each resource is fixed by the combination of execution steps that

• it represents. Each of these resources can process only one unit of traffic

at a time. Thus, the division of the execution sequence and assignment to

associated resources is made only as fine as needed to describe the degree

of concurrency possible in the system. For example, if there are two

distinc t consecutive steps in the execution sequence which can never be

simultaneously in progress for two different instructions , and if the output

of the first step is the only input to the second step and to no other step ,

then a single resource in the model is assigned to the comb ination of the

steps.

A consequence of this technique is that the model will have no

more resources than required to reflect system timing and dependency

accurately . This assignment reduces the model complexity significantly

over one which assigns a resource to each Logical execution step. For

~~
A L

~ _ _• -—- •— --—---- —--.~~ - -  ----- -~~-a- — — --- —~~ • -~~--• ~~ - --



27

examp le , a system with no concurrency, i .e.,  no instruction look-ahead

and no execution unit pipelining or paral lel ism, is modelled as a sing le

resource with variab le, but deterministic , processing time.

3.4.3 Control Stream Generation

To exercise the simulator of the model, a control stream to be

processed by the simulator must be generated. Since the simulator does

not perform any stream computations , each stream instruction need only be

sufficiently described so as to enable the simulator to determine its

dynamic flow. This information would minimally consist of:

-
- 1) The static control flow path of the instruction, i.e., the

resources needed to process the instruction in the order that they are

needed. For example, in a concurrent system, some of the resources needed

by an instruction may be the instruction decoder, a particular execution

• unit, a memory location from which an operand is to be fetched and busses to

transmit the operands to the execution unit.

2) The dependency of this instruction on instructions preceding it

in the stream. This information is necessary for the simulator to set up

the interlocks to ensure correct sequencing of the stream. The execution

of a program on a concurrent processor gives rise to three kinds of

dependencies [TJA7O] :

a) Data dependency: this occurs when two instructions reference

the same operand location. In a concurrent system, they have to be processed

so that they reference that location in the correct sequence as dictated

by the program. 

- -



28

b) Procedural dependency: this occurs when there is a

conditional branch instruction in the stream. Execution beyond the

branch cannot proceed until the branch decision is made and one of two

paths is chosen for execution.

c) Operational dependen:~~~ this is caused by two instructions

attempting to use a processor resource at the same time. This results in

a conflict that has to be resolved by some priority mechanism.

Thus, for a control stream to be executed by the simulator of

the model of a concurrent system, the data dependency information for an

instruction would point to the most recent instructions that read from

or wrote into the operand locations referenced by this instruction. The

procedural -dependency information would point to the most recent condi-

tjonal branch instruction which must be executed before this instruction

4 is executed. Note that the control stream represents a single execution

of a single program. Thus all activity following branches is actually

known by the simulator a priori. Execution is merely delayed until such

time as the branch would have been comp leted in the real system. The

operational dependency of the instruction is completely specified by its

static control flow path through the resources of the system.

3.4.3.1 Control stream ganeration from prpgram traces

The instruction execution trace of a real program is gathered

while it executes on the real system that is to be modelled, or a compa-

tible system. Each instruction in the trace is then mapped into a control

stream instruction , spec if ied by the set of parameters needed to describe

it to the simulator. The static control flow path of each instruction is

entirely determined by the types of operands that it uses and the operations



29

that it performs on them. Data dependency information is gathered from

a simple for-ward scan of the trace by maintaining a list of operands

used and the most recent instructions that used them. This list need only

keep track of dependencies on a certain number of most recent instructions,

on the grounds that instructions further back would have completed

execution and will not delay instructions far ahead in the stream. For

every instruction, the data dependency information is then derived by

• scanning the list for the operands used by this instruction and specifying

the most recent instructions to use those operands. The list is then

updated. Data dependency interlocks built into the simulator use this

information to prevent improper out-of-sequence usage of operands.

Procedural dependency is specified by the occurrence of conditional

branches in the stream, and their “data dependencies’1 - thus, no extra

• scanning of the trace is necessary to gather this information. Operational

dependency is specified by the static control flow paths of the instruc-

tions in the stream - here too, no extra scanning of the trace is

necessary .

3.4.3 .2 Synthetic control stream generation

To synthesize a control stream , a comprehensive , yet tractable ,

model of the workload has to be used as the base. One approach to modelling

the workload is by statistical means. The workload of programs in a given

environment can be character ized by a number of statistical distributions .

The information obtainab le from these distributions must be sufficient to

derive the main attributes of control streams described earlier. For

example , resource demands of the control stream can be derived from an

instruction frequency distribution . Data dependency information for



30

instructions in the control stream can be derived from a distribution of

the number of intervening instructions between two instructions accessing

the same operands.

Procedural dependency arises from the occurrence of algorithmic

control constructs in programs. Almost all the branch instructions in

programs can be attributed to the occurrence of one of the following high

level language features: conditional constructs (if-then-else and case

statements), iterative constructs (for and while statements) and proce-

dures (calls and returns). Thus we feel that the procedural dependency

information for a control stream is best derived from distributions des-

cribing the occurrence of high level language features in that class of

programs. For example, iterative constructs can be described by distri-

butions of the iteration count and the length of the iteration (in

instructions).

We now outline a procedure for stream generation us ing these

statist ical  distributions. The instruction frequency distribution is

samp led , to decide the resource usage pattern of the next instruction in

the stream . If it is an instruction that can have a data dependency,

data dependency information is generated for it by sampling the data

dependency distributions. If it is a branch instruction , a high level

language construct will be generated , depending on the type of branch at

hand . For examp le , a branch-on-counter-condition instruction , such as

BXLE or BXH on the IBM 360, is most often used with for-loops by computers,

and will trigger the generation of a for-loop construct in this scheme.

This will include generation of an iteration count and the length of the

iteration (in instructions) from the corresponding distributions . A 



[ 1
[i 31

procedure similar to the above is then followed for generating the

instructions in the construct .  When the entire construct has been

generated , the outer procedure for generating the main stream is continued.

The stream length is chosen by sampling the program length distribution

(in instructions),  and the generation procedure is stopped when this length

has been reached.

The above procedure follows a f i r s t  order approximation s ince it

assume s that there is no correlation between the occurrence of successive

instructions in programs . More refined procedures would replace the instruc-

- 1 tion frequency distribution by higher order distributions that describe the

occurrence of instruction pairs , tr iplets , etc .

1 3.4.4 Terminology Used in the Model Description

— 1 The simulator of the model was implemented in S IMULA [B1R73].

- I Consequently , much S IMULA terminology has been used in the description of

the mode l that follows . The basic t ime unit of the model is one clock cycle

of the CPU . The units  of t r a f f i c  flowing through the system are processes -

these are the dynamic entities of the simulation . A resource models some

consecutive stages in the execution process , as described in Sec. 3.3.2.

A buffer  has the same function in the model as in the system - temporary

storage for a process while it waits for a certain event to occur.

When a process needs a resource , it gets control of the resource ,

occupies it for the characteristic time of that resource and then relin-

- quishes control of the resource. If the resource is not available , i.e.,

- it is occupied by another process , the process waits, either in a buffer or,

in the resource that it is currently occupying, until that resource is freed

and this process has the highest priority among those waiting to use that

resource. As a consequence , a process frees a resource that it is occupying , 

-~~ -- - • --~~~~~- .~~~~~~~- — -~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~ -



32

only after it has acquired the resource that it needs next, or after

entering a buffer where it will wait for its next resource.

To model distinctive sections of the control flow path of an

instruction, different processes are used. Thus an instruction process

models the flow through the instruction unit and the execution units. An

operand process models the independent flow of an operand that the

instruction needs. A memref process models the flow through the memory unit

4 
for any memory reference - an instruction fetch, an operand fetch or an

operand store. Thus the control flow of a single instruction may involve

the creation and termination of many processes , depending on its path.

Appropriate synchronization mechanisms have to be provided f or connnunication

among all these processes . Further, the entity in the real system that a

process models may change with time. Thus an operand fetch from memory

• involves the following sequence of actions :

a) The instruction process that needs the operand creates an

operand process to model the computation and the transfer of the operand

address to memory. This operand process may undergo delays due to resource

conflicts , data dependency, etc . The instruction process , in the meantime ,

traverses its contro l flow path concurrent ly.

b) The operand process creates a metnref process to mode l the

memory access and waits for it to return .

c) The memref process may undergo delays due to memory confl ic ts

etc . On completing the memory access , the memref process signals the parent

operand process and is terminated .

d) The operand process now models the actual operand to be trans.

ferred to the execution unit .  Af te r  doing so , it ~ignals the parent

instruction process and is terminated .

_ _ _ _ _ _ _ _



33

In the description of the model , a process and the type of en t i ty

that it models in the real system will be used interchangeab ly. For

example, “instruction” will be used in place of “instruction process ,”

except when ambiguity may result. Further , in p lace of the pseudo-processing

that a model resource does , the function accomplished by the corresponding

resource in the real system is quoted for descriptive purposes. For examp le ,

an instruction process will be described as being “decoded in one cycle , ”

whereas all that occurs in a simulation of the mode l is that the process

occupies the resource modeling the decoder in the real system , for one

cycle. In a similar manner , an instruction process will  be quoted as

“fetching an operand from memory ” to denote the memory operand fetch sequence

described earlier.

3.4.5 Resources and Buffers  in the Model

1) IBUF - the instruction buf fe r : holds pre-fetched instructions.

2) IEX - the instruction extractor resource : extracts the next instruction

from IBUF in 1 cycle

3) IDE C - the instruction decoder resource : decodes the instruction sent

to it by IEX in 1 cycle.

4) FXI1J - the fixed point unit instruction decoder resource : decodes fixed

point instructions in l cycle and executes fixed point loads and

stores.

5) FXEU - the fixed point execution unit resource : executes fixed point

computational instructions. Most of the instructions take

1 cycle , with multiplie s and divides execut ing in 11 and 36

cycles respectively [RI S72 J .  

_ _ _ _ _ _ _ _ _ _ _ _  _



6) FLIU - the floating point unit instruction decoder resource: decodes

floating point unit instructions in I cycle and executes floating

point loads and stores.

7) FLAD1 and FLAD2 together constitute the floating point unit add resource :

Each represents one segment of a 2-segment pipeline that executes

- - floating point add instructions in 2 cycles, but can start a new

add operation every cycle.

8) FLMD - the floating point multiply/divide resource: executes floating

point multiply and divide instructions in 3 and 12 cycles

• respectively.

9) The memory bank resources: each holds a memory reference process for a

number of cycles equal to the memory cycle time. The number of

banks is a model parameter. 
-

Figure 3,5 shows the interconnection of these resources and

buffers. The figure reflects the approximations made by the model to be

discussed in Sec. 3.4.9. Thus no busses are shown because , even though the

nominal bus transfer time of 1 cycle is included in the control flow, the

model assumes that there is never any contention for the use of these busses.

This is true of the operand address generation resource as well. The path

for branch instructions out of IDEC - indicates their termination after

execution, while the path for “aborted instructions” out of LBUF, indicates

the termination for instructions that were not decoded because they followed

a branch that was taken.

3.4.6 Control Flow of an Instruction Process

The instruction process models the control flow of an instruction

through the instruction and execution units. We now describe the sequence of

events in the life of an instruction process. The description is not 

~~--—— — -~~~~~—-——~ ~~~ -—-- ——- - — -~~~~~~~ - _ _ _



p.- - •

~~~~~~~ 

—

~~~~~~~

--

~

- 

~~~~~~~~~~~~~~~~~~~~~~ 

- --

~~~~~~~~~

-

35

MEMORY UNIT

L

~~~~~~~~+±. EEf~~~~~~~tNSTR~JCTI ON UNIT

I —~

Operand I
Addres s lEX
Generation F ixed Po int

~‘.emory Operand s
PoinC IDEC

Operands
L _::~: ——

Frow From fixed
floating point registers

-0 point 0—
___________ registdrs

Floating L~~
I
~J _ _ _ _ _

Stores
______ ______

~

—1
~ ~

_

~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~ Fixed Point 

—

to floating to fixed
point registers point registers

- ________I
FtOAT ING PO INT PD~ D POINT
UNIT UNIT

Figure 3.5 Resource configuration in the control stream model.

- ~~~~~~• _ _

36

comp lete in all respects, for lack of space. Detailed documentation is

provided in the listing of the simulator program in Appendix B.

3.4.6.1 The flow conmon to all instructions

1) a) If the CPU is not in loop-mode, the instruction process starts

by making a memory reference to model the instruction fetch, i.e., it invokes

a memref process and waits for it to return from memory. When the memref

is done, the instruction enters the instruction buffer IBUF in its proper

p lace , i.e., that which maintains the program instruction sequence.

b) If the CPU is in loop-mode , no instruction fetch is necessary

and the process starts with the instruction in 1BhP itself.

2) When it has reached the head of the queue of instructions in

IBUF, the instruction acquires the instruction extractor resource and leaves

IBUF. It then schedules a new instruction process to model the prefetch into

the vacant slot in 1BhP. After 1 cycle in IEX, it acquires the decoder

IDEC, releases IEX and is decoded in 1 cycle.

3) At this stage, if any of the address registers needed for an

operand address computation by the instruction, is unavailable, i.e., has

not yet been updated by a previous , as yet uncompleted instruction , this

instruction waits in IDEC, delaying the instruction stream behind it.

4) If the instruction is not a branch, and needs an operand to be

fetched from memory, an operand process is created now. This process will

model the operand fetch from memory , and will return independently to the

execution unit to merge its control flow with that of the parent instruction

process.

The above steps are conmton for all, instruction processes. The

0

control flow of the process from this step on depends on the type of

instruction that the process models.

37

3.4.6.2 Branch instructions

a) When the CPU is not in loop—mode:

a.l) If the instruction is an unconditional branch , the

instruction stream has to be switched to the branch target. The branch

instruction process causes the termination of all the instructions in 1BhP

and all outstanding instruction fetches (see the “aborted instructions”

• path in Figure 3.5.). It then initiates new instruction fetches from the

target, and is then terminated.

a.2) If the instruction is a conditional branch 1 whose

decision depends on the value of the condition code , or a countii.3 register ,

there may be a delay before the branch decision is made. Since the system,

in this case , assumes that the branch will not be taken, in the model,

decoding continues in conditional mode. However , since the branch decision

• is already known to the simulator, it decodes and issues the actual instru

tions following the branch in the control stream only if the branch will

not be taken and dummy instruction processes , if it will. Later , when the

branch decision is “made ,” the conditionally forwarded instructions will be

activated or the dummy instructions cancelled , respective ly. In the latter

case , IBUF is also emptied and new fetches from the branch target are initiated .

The branch instruction process is then terminated .

In both of the above cases , if the branch is taken and the target

is back along the instruction stream , at a distance from the branch location

that is smaller than the size of 1BhP, the CPU is switched to loop-mode .

b) When the CPU is in loop-mode

b.l) If the instruction is an unconditional branch , the stream

has to be switched to the branch target , but no new fetches are necessary.

_ _ _ _ _ _

38

All that occurs is that the instruction at the target , which is already

in IBUF, is scheduled next for decoding. The branch instruction process

is then terminated.

b.2) For conditional branches , conditional mode is set until the

branch decision is made. However, the policy for conditional decoding of

instructions is reversed from that of the non-loop-mode case. The system

now assumes that the branch will be taken. Thus, in the model, actual

instructions from the target of the branch in 1BhP are sent for decoding if

the branch will be taken, and dummy instruction processes , if it will not.

When the branch decision is “made ,” the conditionally forwarded instructions

will be activated , or the dummy instructions cancelled , respectively. In the

latter case, 1BhP is emptied, loop-mode is turned off and new fetches from

the sequential path following the ioop are initiated. The branch instruction

• process is then terminated.

3.4.6.3 Fixed point instructions

1) After passing through the instruction unit as described in

Sec. 3.4.6.1, a fixed point instruction process is transferred in one cycle

to the fixed point execution unit. If it is a conditionally issued instruc-

tion , it cannot proceed for execution until the conditional branch that set

conditional mode has been decided. -

2) When the instruc t ion reaches the head of the queue of instructions

in this unit, it is ready for execution. Its subsequent control flow depends

both on its type and the type of architecture that is being modelled for the

fixed point unit. The latter is an overall model parameter and can take one

of thtae values:

39

a) Serial: In this architecture only one instruction may be in

process at a given time in the entire fixed point unit. ‘ Thus the instruction

gets control of the fixed point decoder FXIU, only after the previous fixed

point instruction has completed execution in the unit and transferred its

result to the appropriate destination.

b) Pipelined: In this architecture, the decoding in FXIU and the

execution in the execution unit FXEU, are pipe lined. Thus, an instruction

can be decoded in FXIU, while the previous instruction is still using FXEU.

If the second instruction is a load or a store , and has its operand availab le,

it can proceed simultaneously and even finish before the first. If its

operand is not available , it waits in FXIU until it is, thus delaying sub-

sequent instructions. If the second instruction is not a load or a store,

and needs the FXEU to execute, it has to wait in FXIU, until the first has

• finished execution. Further , when the second instruction needs the result

of the first instruction as an operand, it obtains that result from the

appropriate location, after the first instruction has transferred it there.

c) Dataf low: This architectural type models the floating point

unit architecture of the 360/91 as designed by Tomasulo [T0~~7], and the —

architecture discussed by Dennis (DEN74]. The FXIU, af ter decoding an

instruction, executes it if it is a load or store. If it is neither, the

FXIU deposits it in a buffer , that creates the effect of a number of virtual

execution units. These are called reservation stations in [TO?,~ 7). The

FXIU is now free to decode subsequent instructions.

The virtual units acquire control over FXEU (the real exec ution

unit) in the order in which they become ready for execution, i.e., when

they have received all their operands. Thus instructions that do not depend

on one another can be executed out of sequence . Further , when an instruction

1~
- - -

~~~~~~~~ I

40

is completed and has a result to be transferred , it broadcasts the results

to all the virtual units that need the operand in the same cycle . This

eliminates a number of redundant operand transfers.

3) The instruction, after it gains control of FXIU , is decoded in

1 cyc le . If it needs two operand s , the instruction process itself models the

control flow of one of these - the register operand . If the other is a memory

operand , the operand process to mode l the fetch h~as already been created (see

Sec . 3.3.6.1). If the other is a register operand , or if the instruction

needs only a single register operand, the instruction now creates an operand

• process to model the control flow of that register operand.

If the register operand that this process now models is available, its

transfer to the execution unit or to the destination of a load or store instruc-

tion, takes one cycle. If any operand is not availab le, the action taken

depends on the type of architecture being modelled , as described earlier.

4) If it is a load , the instruction has now been completed. If it

is a store , a memref process is created to model the storing of the operand

in memory, at the end of which the instruction has been completed. If it is

neither a load nor a store, the process occupies FXEU for the required

execution time of the instruction that it is modelling. At the end of its

execution it transfers its result to the appropriate destination(s) in one cycle.

The instruction process is then terminated.

3.4.6.4 Floating point instructions

The control flows for floating point instructions are very similar

to those for fixed point instructions.

1) A floating point instruction is transferred from the instruction

unit to the floating point unit in one cycle. If it has been conditionally



41

issued , it cannot proceed for execution until the branch that set conditional

mode has been decided. When it reaches the head of the queue of instructions

in this unit, it is ready to be decoded by the floating point decoder , FLIU.

2) Its subsequent control flow depends on its type and the type of

architecture being modelled . The three types of architectures are analogous

to the three types of fixed point unit architectures. However, there are

two execution units in the floating point unit ; the floating point add unit

FLAD and the floating point multiply/divide unit FLMD. With this difference,

the three types are :

• a) Serial: Only one floating point instruction may be in process

in the entire unit at any given time. Thus the FLIU can decode the next

instruction only after the previous instruction has completed execution ,

and transferred its results to the appropriate destination.

b) Pipelined : In this architecture , decoding and execution are

pipelined. Thus decoding in the FLIU, an add in the FLAD and a multiply

or di -~~’ in the FL~~ can proceed simultaneously . Loads and stores, which

are exe~~ t€ 1 in the FLIU itself , may thus f inish even before previous add or

multiply instructions, if their operands are available . If not, they hold

the FLIU, until the operands do become available. Adds and multiplies

decoded in FLIU, wait until their respective units are free before releasing the

F’LIU. Results are transferred to their destinations , from where following

instruct ions can obtain them.

c) Dataf].ow; Both FLAD and FUID have their sets of reservation

stations, which act as virtual execution units. The FLIU executes loads

and stores and deposits other instructions in the appropriate virtual

execution units. It can thus decode instructions at the rate of one every

cycle. Instructions in virtual execution units acquire the physical units,



42

in the order in which they become ready for execution. After execution,

the result is transferred in one cycle to all the virtual units that need it.

3) After being decoded by the FLIU in one cycle , the instruction

obtains its operands and completes execution in the same manner as fixed

point instructions described in Sec. 3.3.6.3.

3.4.7 Control Flow of an Operand Process

The operand process models the control flow of operand fetches

which proceed in parallel with the control flow of the main instruction.

Since fixed point and floating point operand processes have analogous

control flows in their respective units , we present a cotx~ion description of

both types.

If the process models a memory operand fetch, it has the memory 
—

address computed in one cycle and is transferred to the memory unit in

• another. In the memory unit, it waits until the most recent instruction

that needed that operand , for reading or updating, has used it. When this

data dependency has been resolved , it creates a metnref process to model the

actual fetch of the operand from memory. When the tnetnref process signals

this process on return, the operand has been fetched from memory and can be

transferred to its destination. The actual transfer depends on the type of

architecture being modelled. In serial and pipelined architectures , the

operand waits until the instruction that needs it has acquired the resources

necessary for its execution. In a dataf low architectut~~, ..he operand waits

until the instruction that needs it has acquired a virtual execution unit.

In all the above cases it is then transferred to its destination , an

execution unit or a register, in one cycle.



43

If the process models a register operand fetch , its control flow

again depends on the type of architecture being modelled. In serial and

pipelined architec tures , it waits until the most recent instruction that

needed that operand , for reading or upda ting, has used it. When this data

dependency has been resolved , the operand is transferred to its destination -

an execution unit or a register - in one cycle . In a data flow architecture,

if the operand is available for use, it is transferred in one cycle to its

destination. If not, it will be transferred automatically to the virtual

execution unit, when the most recent instruction that needed to update it

has been completed. Thus the operand process need not wait for data

dependency to be resolved .

At this stage , for both register and memory operands , the process

signals its parent instruction that the operand has been delivered and is

• terminated.

3.4.8 Control Flow of a Memref Process

The memref process models the control flow of any memory reference

through the memory unit. When it is invoked , the address of the memory

reference has already been transmitted to the memory unit. The memref process

waits until all previous references to the memory bank that is addressed by

this process , have been completed. When the bank is availab le, this process

occupies it for a number of cycles equal to the memory access time being

modelled . It then signals the parent process that invoked it that the access

is complete. After this , it continues to occupy the bank until a number or

cycles equal to one memory cycle time have passed since its initiation .

It then releases the bank , and is terminated .



3.4.9 Approximations Made in the Model

A number of approximations were made in building the model , in

order to keep it tractable. Further, experience gained from the more

detailed model in [KtJM76a] indicated that a number of features had a

negligible effect on the system performance. We now list some of these

approximations.

1) Except for the instruction buffer , all the system buffers are

assumed to be unbounded in size. This is reflected in the description of

the model, where processes are never delayed because of buffer overflow.

- . Evidence from the more detailed model indicates that buffer overflows rarely

occur in the system as the buffer sizes in the original system are generally

adequate, yet not costly . However, keeping the instruction buffer bounded

is the most effective way of keeping the instruction supp ly rate in the

model close enough to that in the system.

2) Conflicts for busses that transfer data are neglected. In

effect, the model assumes an unbounded number of copies of all busses.

Since bus conflicts play a very small role in performance degradation , this

is not a very serious approximation.

3) In the sys tem, each instruction fetch returns a double word

(8 bytes) from memory. This double word can contain from one to four

instructions. In the model, a separate fetch is needed for every single

instruction. This is a very serious approximation, and was made solely to

keep some higher level models tractable. We have not examined the effects

of this approximation very carefully.

4) In the system, when a conditional branch is decoded , two double

words are fetched from the branch target , as a hedge against an incorrect

branch prediction. In the model , this feature is absent.

LL~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~ -- - -~~~~~~~~~~~~~~~~~~~~~~~~~~ -— - --------~~~~~~~~~~~- - - - ~~~~~~~~~~~~~~~~-- - -~~~~~~ --- -- -



45

5) In the system, the memory unit checks the address of each

incoming fetch request against the addresses of ongoing fetches or stores.

If there is a match, the second fetch can be honored almost simultaneously

with the previous reference to the same location. This is called the

multi-access feature [B0L67]. In the model , this feature is absent. This

assumption reflects evidence from the more detailed model [KUM76a] that

multi-access occurs fairly infrequently and does not affect performance to

a considerable extent.

In view of the above approximations, and the lack of evaluation

• of their impact on the accuracy of model predictions, it would be more

realistic to say that the system being modelled is a system very much like

the IBM 360/91.

3.4.10 System and Model Parameters

• To study system performance as a function of various system

architectural parameters, a number of these system parameters were

parameterized in the control stream model as well. The model parameters

that can be explicitly specified are :

1) mc - the memory cycle time (in CPU clock cycles). For simplicity,

the memory access time is assumed to be 5/6 of the memory

cycle time.

2) tub - the number of memory banks , i.e., the depth of memory

interleaving.

3) ib - the size of the instruction buffer 1Bhp .

4) fx - the fixed point unit  architecture. The values associated

with the three types described in Sec. 3.3.6.3 are :

Serial :1
Pipelined :2
Dataflow :3 

- - 



46

F 5) fL - the floating point unit architecture with the same

association of values with types as for fx.

6) Lm - the loop-mode feature. The value assigned to Ltn is:

0 - if no loop-mode cap ability exists.

1 - if the loop-mode capability exists.

It should be noted that the b andwidth of each of the major units -

the instruction unit, the memory unit, the fixed point unit and the floating

point unit - is affected by at least one parameter in the above set.

Further, the values associated with the execution unit architecture types,

increase in the expected direction of increase of bandwidth.

Besides these , a number of other architectural parameters can be

varied by simple changes to the simulator program. These include execution

times of various resources, priority mechanisms for scheduling various

resources , etc.

3.4.11 Performance Measurements Using the Model

As discussed in the previous sections , the model is used in the

construction of a simulator, which is driven by program execution traces.

— A wide variety of performance statistics can be gathered during the sitnu-

lation .

For examp le, suppose this model is to be used to calibrate a

queueing network model of the system. From a knowledge of what the servers

comprising the queueing model accomplish , different points in the control

flow paths of the processes of the control stream model can be identified as

the points of entry and departure of these servers. At these points ,

statistics can be gathered regarding server arrival and departure rates

and counts. These statistics can be used to calibrate the queueing model.

Li 
- - - - -



47

If an analytical model is to be built relating some overall per-

formance measure such as system throughput or memory utilization, to the

system parameters , the appropriate performance statistics can easily be

gathered from simulations of the control stream model, for the required

settings of the system parameters.

L The performance measure that was most frequently used in the

stud y, is the average system instruction throughput. This is defined

as the average number of instructions that were completed per CPU cycle ,

over the run of the program . This was approximated in the model , by the

• 
- average number of instruction processes that terminated normally per

simulator cycle. Normal termination excludes those instruction processes

that were flushed from the system following a branch , as well as those

dummy instruction processes that were conditionally decoded following a

wrongly predicted corditional branch. This throughput is measured very

simp ly in the model by dividing the total number of instruction processes

that terminated normally , by the number of simulator cycles needed to

execute the program trace.

3.5 An Analytical Performance Model of the System

In this section we will describe an analytical performance model

of the system chosen for study. The mode l attempts to describe the per-

formance measure of greatest interest - system instruction throughput - as

a function of the system parameters listed in Sec. 3.4.10. Statistical

regression techniques are used to estimate this function. For an excellent

introduction to regression theory , see [DR.A661. [TSA72J is an illuminating

example of the application of regression modelling to computer system

performance evaluation .

,

‘-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



U ‘

~~~~~~~

- -

~~~ 

.-- —-

~~~~~~~

48

3.5.1 Introduction to Regression Theory

Analytical model building by regression analysis involves an

iterative search for a mathematical expression relating a dependent variable

Y, called the response, to a set of independent variables X1, X2 , ...
called the factors ,on the basis of observed data. Since the functional

relationship stay , in general , be complex, a summarization of the relation-

ship is achieved by:

a) Selecting a small but relevant subset of the independent

variables for inclusion in the expression.

b) Choosing a simple but plausible mathematical form to express

the relationship. A common form to choose is the linear form, in which the

expression is linear in its parameters . A further simplification is the

first-order model , in which the highest power of any factor that occurs in

the expression is one.

3.5.1.1 Linear regression models

In theory, the entire set of observed data can be fitted exactly

by a linear model of the appropriate order. For example, a linear quadratic

model involving three factors is

3 3 3 3
~~~~~~~~ + E~~.x + E ~~..x. 2+ E E  B . X X.0 i i  ii i. . . .i 1  i 1  1 13 1+-L

This tnodel, which has 10 parameters , can be used to exactly fit data from less

than 11 observations. However, such a model may have very poor validity at

points other than those at which the observations have been made. Further

the interpretation of higher order interactions is usually rather difficult.

In practice, therefor e, it is preferable to start with a linear first-order

model and to progressively introduce higher order interactions only if they 

-



49

greatly increase the precision of the model. A good example of this approach

is found in [TSA72]. A linear first-order model of the above system is

Y = + + ~2x2 +

3.5.1.2 Calibration of regression models

Calibration of say , a linear first-order model consists of estimation

of the ~1’s, from data observed about the system. The estimation procedure

is that of least square error. Suppose we have n observations of a system

response y to which a linear first-order model involving one factor X1 
is to

-
, be fitted . Let the observations be (4. Y1),... (X~, ?). The response value

predicted by the model at the factor value 4 is

Thus the sum of the squares of the deviations of the model predicted responses

• - from the system responses is

_
tk 

~~~~~~~~~~~ i 2

i=l

For least square error , and
~ l are assigned values which minimize S. This

is done by solving the equations

n
~~—~ .‘ -2 E (Y~~ - a 0-~~~1X~) = O

0 i=l

and ~1~~= _ 2 E Xi (y i _ B -~~~ X~) = O
~ 1. i=l 1

which yields the least square estimates of and
~~.

50

The above procedure is easily generalized to models of higher

order as well as to non-linear models.

3.5.1.3 Regression algorithms

The most widely used regression model building algorithm is the

stepwise regression procedure described in [DRA66]. In this procedure,

factors are introduced into the regression equation in the decreasing order

of their partial correlation with the response. However, a factor is

• - introduced only if its correlation with the response is above a significance

level that is specified by the model builder. Moreover, when a factor is

-
•

introduced , the contributions of factors that had been introduced before are

re-assessed , and some of these may now be rejected from the model. Thus the

final model will contain only those factors whose correlation with the

response is above the significance level specified by the model builder , and

which are not strongly correlated with each other.

The detailed procedure involves analysis of variance and other

statistical techniques, which are beyond the scope of this report . [DRA66J - -

is an excellent reference for these methods.

3.5.2 The Analytical Model of the System

The analytical model of the system 360/91, that was chosen as

the high level of the 2-level hierarchy, expresses the system instruction

throughput , as defined in Sec. 3.4.11, as a function of the six system

parameters described in Sec. 3.4.10. The model chosen was a linear , first-

order model. Howe ver , to achieve a bet ter fit with the low-level model

predictions, as well as to reflect the actual range of values usually

chosen for some system parameters , these parameters were represented in

various functional forms in the analytical expression. Thus, since most

systems are designed with the number of memory banks and instruction buffer

51

slots chosen as powers of 2 , these parameters were represented in the

logarithmic form in the analytical model.

The analytical model is thus expressed by the relation :

sit = ~~ (1)

— where :

Sit = average system instruction throughput

= model parameters that are estimated by the regression procedure.

mc = memory cycle time

tub = number of memory b.inks

-

•

ib = instruction buffer size

fx = the f ixed point unit architecture parameter

U = the floating point unit architecture parameter.

The Lm parameter is handled by building separate equations as in (1) for

Lm = O a n d Lm = 1 .

As is characteristic of models at the high end of the hierarchy

the accuracy of this model is expected to be good only in restricted regions

of the system parameter space. However, its evaluation is trivial - once

the ~~ ‘s are known, i.e., once the model is calibrated , the performance

prediction for a set of system parameter values is obtained by plugging

these values into equation (1).

3.5.2.1 Model calibration

Given a set of n observations of throughput , sit~ , at the system

parameter setting (inc ., tub ., ib~~ fx~~ U.) (j=l ,...n), the calibration

procedure estimates the ~~, ‘s (i=O ,...5) of the regression equation(l).

The procedure uses the stepwise regression algorithm mentioned in the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- -~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~
- - -  

~~~~~~~~~~-


52

previous section, with some simplifications tailored to the specific use

of the model.

Since the model is to be used in system design or optimization,

it must indicate values for all the system parameters in the final system.

This implies that all the system parameters must appear in the expression

for performance. Thus, the usual statistical significance test that is

applied to decide which factors should appear in the regression equation

is bypassed ; instead all the factors are forced into the equation.

Further , as the outline of the optimization procedure in Chapter 2

suggests, the model needs to be accurate only in the system parameters

sub-region of immediate interest. This is because of the continual process

of re-calibration as the procedure explores the system parameter space. Thus

at the initial stages,even if the model is not statistically significant

(see [DRA66]) , at some reasonable level of confidence , it will be accepted ,

since it is reasonable to expect that as more recalibration is done, the

accuracy of the model, in local regions, will improve. Consequently, the

statistical tests for significance of regression and for lack of fit using

replicated observations [DRA66J are not performed. Thus the regression

procedure is used solely for the least squares estimation of the ~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



53

CHAPTER 4

SYSTEM OPT IMIZATION USING T}~ PERFORMANCE MODEL HIERARCHY

4.1 Introduction

In the last chapter , we introduced the CPU-memory subsystem of

the IBM System 360/9 1, as the system chosen for the case-study of the

hierarchical approach to performance evaluation. We presented a functional

description of the system , and two models - a contro l stream model and an

analytic performance model - of the system. In this chapter , we discuss

the construction of a hierarchy composed of these two models. W~ 
i_so

describe a procedure that uses the hierarchy to design an optimum system.

4.2 System Optimization Objectives

The techniques described in this chapter can be used to optimize

a system configuration with respect to any objective function that involves

system performance. In our study,  we chose cost/performance ratio as the

objective function to be minimized. Other objectives that may be considered

by a system designer include maximizing system performance subject to an

upper bound on system cost, and minimizing system cost subject to a lower

bound on system performance.

We will use the performance model hierarchy to es timate the

performance component of the objective function alone. We will assume that

the other components of the function can be estimated with the desired

accuracy.

4.3 Application of the Hierarchical Approach

In chapter 2, we introduced the concept of a performance model

hierarchy as an efficient tool for exp loring a computer sys tem parameter

space. Its efficiency arises from the two main features of the hierarchy:

L —



54

I) The accuracy of performance predictions increases as we go

down the hierarchy.

2) The computational cost of prediction increases as we go

down the hierarchy.

The latter feature demands that a high-level model be used for

performance prediction in any optimization loop , so as to keep down the

computational cost of the optimization procedure. The former feature ensures

the accuracy of the procedure , by providing a low-level model as the basis

for re-calibration of the high-level model after every iteration of the

optimization. The optimization is then repeated till the predictions of the

two models converge.

4.3.1 Roles of the Models in the Hierarç~y

From the discussion above , it is clear that the two models play

distinct roles in the hierarchy. The control stream model serves to mark

with great accuracy points on the performance surface in the six-dimensional

system parameter space. The analytical model attempts to use as many of

these points as necessary to obtain an approximation to the surface in a

local region of the space. In fact choosing a linear , orthogonal (first-

order in all its factors) analytical model, cho oses a hyperplanar approxi-

mation to the performance surface in that region. It would be expected

that this approximation is quite gross over large regions of the space.

However, the optimization procedure relies on three factors to make this

approximation palatable :

a) Constant re-calibration, i.e., using the control stream model

to fill in a new point on the surface with every iteration of the optimization

procedure. This causes the hyperplanar approximation of the analytical model

I

~~~j j L4


55

to change, as new points appear on the surface in the region currently

being exp lored, or as the optimization procedure shifts to new regions

in the space.

b) As the optimization procedure zeroes in on the optimum,

the region of interest shrinks in size, making the hyperplanar approxi-

station increasingly better , in that region.

c) In the optimization procedure , the hyperplane model , i.e.,

the analytical model,will be used primarily to indicate the preferred

direction of movement on the surface toward the optimum. It will have a

smaller part in deciding the magnitude of the movement in that direction.

These point s will be elaborated upon in later sections . In

the discus sions to follow, the analytical model will also be referred to

as the hyperplane model or as the hyper’lanar approximation.

4.4 The Optimization Procedure

We now describe a systematic procedure for exploring a given

system parameter space , to optimize an objective function that involves

system performance. The description will be in terms of a general system

parameter space, with the case-study being used to illustrate the concepts

developed.

4.4.1 Definitions and Overview

The procedure that determines the optimum system is called

the global optimization procedure. The points in the space for which the

performance has been evaluated using the low-leve l model are called

calibration points. The set of calibration points is called the calibration

set. One point in this set is singled out as the reference system.

This system is the focal point in the region that is currently being explored

by the global procedure.

- -~~~-- —-- - -— _

56

Each iteration of the global optimization procedure consists of

the following steps:

a) A local optimization procedure is app lied to the objective

funct ion using the current version of the analytical model. This will

usually be a standard multi-dimensional, real-variable optimization

procedure .

b) A movement rule is invoked to determine the new reference

system from the old reference system and the prediction of the local

optimization procedure.

• c) A stopping rule is invoked to see if the global procedure has

converged.

d) If it has not converged , a recalibration procedure is applied

to the calibration set to recalibrate the analytical model at the new

• reference system using a subset of the calibration set called the recali-

bration set. This may involve evaluating the performance of the new

reference system using the low-level model.

Once the global procedure has converged , a sensitivity analysis

procedure is invoked to probe the region near the optimum. This is both for

the purpose of identifying the true optimum in the local region to which the

global procedure has converged, as well as to determine the sensitivity of

the objective function to the various system parameters near the optimum.

For the first iteration of the global procedure, an initial cali-

bration set and an initial reference system must be supplied. Figure 4.1 is

a flowchart depicting the various steps of the procedure . We elaborate on

each of these in the sections to follow.

~~~ - -— -- - -- --•-—-- -- ~~~~~-_ “-~~-



57

Choose initial
calibration set
and initial
reference system

Run recalibration
proced ure on
calibration set to
recalibrate analytical
model at reference
system

- 1  _________________

Run local optimization

L procedure

Apply movement rule
to determine new
reference system

App ly stopping rule

~o Procedure Yes
converged?

New 
~ Sens i t iv i ty

— Yes reference  No ~ Analysis

calibrated? 

- 6Run low Leve l model
at re ference  system.
Add to calibration
set

FP-5746

Figure 4.1 The global optimization procedure.



- - - - 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~-~~~—--- ------- —-— 

~~1

58

4.4.2 System Parameter Metrics and a Multi-dimensional Grid in the Space

Since the hyperplane model approximation to the performance

surface is expected to improve for smaller regions of calibration , the

concept of distance in the system parameter space becomes important. Thus,

recalibration with respect to the reference system should only involve

points from the calibration set that are close to that system. To quantify

distance in the space, a metric has to be defined for each system parameter

dimension. The metric must be chosen in such a manner that distances along

individual dimensions can be combined to yield a reasonable estimate of

overall distance in the space.

Often, it is most convenient to choose the metric along each

system parameter dimension to reflect the maximum resolution possib le in the

set of values that the parameter can realistically assume. Thus, in our

case-study , the metrics were chosen as shown in Table 4.1. Distance in the

space is then defined as the standard n-dimensional Euclidean distance. For

examp le, in- our case-study , the distance between two systems with parameters
—

(mc , tub , ib , fx , f~ , Liii) = (~ , 64 , 8, 3, 2, 1) and (7, 16, 32 , 1, 2, 0) is:

((7_5)2 +(4~6) 2+ (5_3)2 +(l_3)2÷(2 2)
2
÷(O l)2] =~~~~~metric units.

By this definition of a metric along each dimens ion , we have laid

a multi-dimensional grid on the system parameter space , with points of the

grid spaced one metric unit along each dimension. Each grid point now

represents a realistic system configuration. The goal of the optimization

procedure is to identify the grid point which represents the optimum system.

4.4.3 The Initial Calibration Set

If the global optimization procedure can be shown to converge to

the global optimum system regardless of the s ta r t ing point , the initial

__

~

_ ~~~~~~~~~~~~~~~ - --- - -— — - - -. ~~
—

~~~~
---- _ —

~~
--

~~~~
‘-- -

59

Table 4.1 - Metrics for the System Parameter Dimensions

System Value i n Va l ue in
Parameter natural units metric units

t

~

-

mc mc CPU cycles mc

mb mb banks log mb

ib ib buffers log ib

fx fx architectural fx
u n i t s
(s ee s ec t ion 3. 14.10)

fi fJ. architectural fl
units

lm im architectural im
units

4 .

60

reference system could be arbitrarily chosen. Since this may not be the

case , the choice of the initial reference system may have to be based on

intuition or experience, or be fixed by other cost or performance constraints.

In our case-study we arbitrarily chose the point that matches the existing

360/91 as the initial reference system. This system shall henceforth be

• referred to as the norma l system.

An initial calibration set must then be chosen around the reference

system. Since this is the calibration set for the first iteration of the

global optimization procedure , it must be chosen so as to yie ld enough

• information for a reasonable fit of the hyperplane model in the region around

the initial reference system. This implies that there should be points on

e ither side of the reference system along each dimension. In our case-study,

we chose a very sparse set consisting of systems each of which had a change

in only one dimension from the reference system. Table 4.2 lists the initial

calibration set chosen for the case-study. This is repeated for Lm = 0 and

L~n = 1 as will be discussed in Sec. 4.5.1. The parameter values are given in

the natural units listed in Table 4.1. This will be the practice through

the rest- of this report.

The control stream model is then used to predict system perfor-

mance at all the points of the initial calibration set. These points on the

performance surface are then used to calibrate the analytical performance

model to be used in the first iteration of the global optimization procedure.

The calibration is done as described in Sec. 3.4.2.1.

4.4.4 The Movement Rule

Since the local optimization procedure is supp lied with a very

approximate evaluation of the objective function , viz, one involving the

hyperplane model, its predictions must be used carefully to prevent the global

--—~~ - — - ~~~~~ - - -~~~~~~~~~~~~~~~~~~~~~

-~~~ - - ~~ -~~- - - - ~~- ——__

61

Table 4.2 -Initial Calibration Set and Reference System

System System Parameters

mc mb ib f x fi

R e f e r e n c e
System

1 12 16 8 1 3

2 6 16 8 1 3

3 18 16 8 1 3

14 12 8 8 1 3

5 12 32 8 1 3

6 12 16 8 2 3

7 12 16 8 3 3

8 12 1 6 8 1 1

9 12 16 8 1 2

10 12 1 6 14 1 3

11 12 1 6 16 1 3

I

~

--

~

-

~

- -.
_ _ _ _ _ _ _ _ _ _ _ _

62

procedure from making wild excursions. For a simp le example to illustrate

this, consider the unidimensional performance function P(S) in Figure 4.2.

The analytical model for this dimensionality is a straight line. When the

model is M1 about the reference system ~l’
-its range of validity R1, is

much larger than the range R2, of the model M
2

about the reference system S
2.

Thus movement must be much more restricted when the optimization uses the

model N
2

than when it used M
1
. Even when using the model M1, movement

must be somewhat restricted to prevent it from going outside the range R
1
.

In the optimization of the case-study system the following move-

-

• ment rule was adopted. When the local optimization procedure arrives at an

optimum based on the current analytical model, the reference point is shifted

one grid point (in metric units) along each dimension in the direction that

the predicted optimum is located with respect to this reference point. This

is done regard less of the magnitude of the distance between the reference

point and the predicted optimum.

The restriction of the movement to one grid unit prevents excursions

beyond the range of validity of the analytical model. However the enforced

movement, regardless of the magnitude predictions of the local optimization

procedure , forces the procedure to make a rough exploration of as much of the

objective function surface as possib le in the initial stages , before zero ing

in on a particular region as the most promising one for finer exploration.

Examples of the application of the movement rule are given in Table 4.3. It

should be noted that the movement along the inc dimension is three metric units

in the first example and one metric unit in the second. This is a consequence

of the adaptively varying metric unit adopted for the mc dimension , to be

discussed in Sec. 4.5.2.

-- - — —- — — -~~“— -~~~- -

V
-
~~~
--

~~~~~
-

~~~~~~~~-~~~w-~~~~~~~~~~-
- - - -

~~~~~~~~
-

~~~~~- ----~~~ -

63

I 
M1

U’)

Q I
C I

0 I

- -

I I
I i
I I

— — — ~~~
_ _ _

52 Si
F~ -3?38

Figure 4.2 Validity of the analytical model in different regions.



64

Tabl& 4.3-Application of the Movement Rule

System Parameters

mc mb ib fx fl

Starting
reference system 12 16 8 1 3
Optimum system
predicted by
hyperplane
model 9.6 63.9 31 .9 2.9 0.7

New reference

~ I 
system 9 32 16 2 2

Example 1.

Starting
reference system 6 32 16 2 1

Optimum system
predicted by
hy p er p lane
model 4.2 38.14 12.7 3.5 1.6

New reference
system 5 614 8 3 2

Example 2.

~ 
-i

- -

~

-

~

--



65

( 4.4.5 The Stopping Rule

When successive iterations of the global procedure cause an

oscillation of the reference point between two calibration systems , the

procedure is deemed to have converged and is stopped . To understand this ,

let us consider the cost/performance function of one system parameter in

Figure 4.3. Suppose the n-th iteration of the procedure using model M1,

at the reference system S1 
causes a movement of the reference point to S

2
.

Let the recalibrated model at S
2 

be which , on the (n+1)st iteration

dictates a movement of the reference point back to S~ . If S
2 

already

existed in the calibration set at the n-th iteration , the situation now

is exactly the same as at the n-th iteration. Thus the (n+2)fld iteration

must cause the reference point to move back to S
2
. The procedure would thus

osc illate foreve r between S
1 

and S2. It is therefore stopped.

• 4.4.6 Heuristic Algorithms for Recalibration of the Analytical Model

For each iteration of the global optimization procedure , the

reference point is moved to a new system by the app lication of the movement

rule described in Sec. 4.4.4. If the new reference system is not a cali-

bration point , the low level model is used to accurately evaluate the per-

formance at this system , which is then added to the calibration set. The

analytical model is then recalibrated at this reference system choosing an

appropriate recalibration set. This possib ly new hyperplanar approximation

is used in the next iteration of the global optimization procedure. In

this section , we discuss algorithms for performing this recalibration.

4.4.6.1 Calibration requirements

For the hyperplane model to be a good approximation, information

local to the region around the reference system must be used in the



- - V

66

• 4Actua l
Cost/ Performance

__ Curve /
(I)  

•
,

/\ \ ,
(/) U ., /J \

\
\
\\ 

\
\~~~ 

- 

~~~~~~~~~~~~ •/~

~~~~~~~~~~~~ 
M2

S2 S
1
1

FP-5739

Figure 4.3 Oscillation between two reference systems.

- - ------ -
~
---- - -  ——-—-V -V 

- V- - - —  ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —V  —~~



67

recalibration. Thus the set of points chosen for recalibration must

satisfy the following two criteria.

1) Along those dimensions for which the reference system does not

have an extreme value, i.e., calibration points exist on either side of the

reference system along that dimension, the point closest to the referencer system each direction along that dimension must be in the set.

2) Along dimensions for which the reference system does have an

extreme value , i.e., no calibration point has a value beyond that of the

reference system in one direction along that dimension, the point closest

• to it in the other direction along that dimension must be in the set.

For examp le, the minimum recalibration set for the grid points

of Table 4.2 , with system 0 as reference , will not include systems 7 and 8,

since system 0 has extreme values along the fx and f2 dimensions and

systems 7 and 8 are not the closest ones to 0 along those dimensions.

These two criteria are used by the two recalibration algorithms

to be discussed now.

4.4.6.2 Multi-dimension Recalibration Algorithm

In this algorithm , all the calibration points are ordered in

increasing order of their distance from the reference system. Systems for

the recalibration set are chosen in this order, until the above two criteria

are satisfied for all the dimensions. At this stage , any other points that

are at the same distance from the reference system as the point in the

recalibration set at the maximum distance from the reference system are also

included in the set. This recalibration set is then used by the multi-

dimensional regress ion p rocedure , described in Sec . 3.4.2.1, to estimate

the B~~’s of the analytical model. If the cardinality of the set is

insufficient for the regression procedure to estimate all the model parameters ,



- -V -V  -V

Li .
11

68

further points are added to the set in the increasing order of their distance

from the reference system, until the cardina].ity is sufficient.

Table 4.4 shows the results of an application of this recalibration
- - 

algorithm to the case-study system. Notice that the grid unit distance in

the mc d imension is six cyc les in this example. The reason for this is

explained in Sec. 4 .5.2.  The lower half of Table 4.4 shows percentage
- 

~~
- errors between the observed throughput values from the control stream model

and the fitted throughput values from the analytical model. Thus, for the

systems in the recalibration set in this example, this algorithm achieves

an upper bound of 27. on the absolute regression error.

It should be observed that the algorithm as described chooses the

smallest local region containing the calibration points needed to satisfy

the criteria of Sec. 4.4.6.1, This is the implementation of the philosophy

of using the analytical model to make only local predictions. Including

more systems than the above minimum , would decrease the locality of the

model and increase the regression error b ound of the algorithm.

4.4.6.3 Individual Dimension Recalibration Algorithm

In this algorithm , system clusters are identified separately for

each dimension. These clusters are then used to calculate the slope, i.e.,

the 
~~~~
, along that d imension, independently of the other dimensions.

The clusters are formed in the following manner . For each d imension ,

the point or points closest to the reference system along that dimension,

according to the two criteria of Sec. 4.4.6.1 are first included in the

cluster. If there is more than one candidate for these nearest neighbor

points, the one that is the closest to the reference system in the

n-d imension Euclidean sense defined in Sec. 4.4.2 is selected. Next , all

-—

- -

69 —

Table 4.4 - Multi-dimension Recalibration Algorithm

Calibration set: 00 02 03 014 05 06 07 08 09 10 1 1 27
Loopmode: 1 (on)
R e f e r e n c e sy s t e m : 27
mc grid metric: 6 CPU cycles

Distance of systems from reference system:
System mc mb ib fx fi im Norm~ 2

27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.33 0.00 — 1.00 — 1.00 1.00 0.00 3 .11
6 0.33 —1.00 — 1.00 0.00 1.00 0.00 3 .11
9 0.33 —1.00 — 1.00 — 1.00 0.00 0.00 3 .11

1 1 0.33 —1.00 0.00 —1.00 1.00 0.00 3 .11
• 0 0.33 —1 .00 — 1.00 —1.00 1.00 0.00 4 .11

7 0.33 —1.00 —1 .00 1.00 1.00 0.00 14 . 11
8 0.33 — 1 .00 —1 .00 — 1.00 — 1.00 0.00 14 .11
2 —0.67 — 1.00 — 1 .00 — 1 .00 1.00 0.00 14~~)424
3 1.33 —1.00 — 1.00 — 1.00 1.00 0.00 5.78
24 0.33 —2.00 — 1.00 — 1.00 1.00 0.00 7.11

10 0.33 —1.00 —2.00 —1.00 1.00 0.00 7.11

Re—calibration set : 27 5 6 9 11 0 7 8 2

Hyperplane model coefficients:
Constant mc mb ib fx fi
0.28991 —0 .01287 0.01939 0.001425 0.010914 0.00761

Error in hyperplane model predictions of throughput:
System Observed Predicted %Error

27 0.30965 0.31226 —0 .824
5 0.28156 0.27895 0.93
6 0.26681 0.27050 — 1.38
9 0.2149214 0.25195 — 1 .09

11 0.266142 0.26381 0.98
0 0.25669 0.25956 —1 .12
7 0.281458 0.28144 1 . 11
8 0.24699 0.22414314 1.08
2 0.33764 0.33677 0.26
3 0.20186 0.18235 9.66
4 0.2239 1 0.214018 —7 .27

10 0.19933 0.25531 —28.09

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- — -V . V V~~~~~~~~~~~~~~~~~~ - V V ~~~~~~~~~~~~~~~ V - V  -—--— --

70

points within the hypercube defined by the reference system and the nearest

neighbor points are included in the cluster. Thus the cluster may contain

points that differ from the reference system in dimensions other than the

V one under consideration. Let there be in such dimensions. The points in

the cluster are used by the multi-dimensional regression procedure of

Sec. 3.4.2.1 to fit a (m+l) factor regression equation with the dimension

of interest being forced to appear in the regression equation. That coeffi-

cient alone is taken from the resultant regression equation, and used as

an estimate for the 
~~ 

along that dimension.

This procedure is repeated for each of the dimensions. Once the

have been estimated for each dimension, is calculated by forcing

the analytical model to exactly match the performance of the reference

system.

Table 4.5 shows the results of the application of this algorithm

to the same set of calibration points as in Table 4.4. For example, along

the mc dimension, systems 5 , 6, 9, and 11 are the nearest neighbors of the

reference system 27 on the right, while system 2 is the nearest neighbor

on the left. These define a hypercube with dimension ranges (-0.67 to 0.33,

-1. to 0, -l to 8, -1 to 0, 0 to 1) in metric units. Since system 0 is

inside this hypercube , it is included in the cluster for recalibration of

the mc dimension.

It can be seen that the precision of this recalibration algorithm

is far worse than that of the multi-dimension algorithm. In this example,

the individual dimension algorithm achieved an upper bound of 107. on the

absolute error for systems that occur in some cluster , as compared to 2%

by the multi-dimension algorithm. In fact in all the examp les that were

~~~~~ ~~~~~~~~~~~~ _~V V V - - -V - - 
- —— — —- V - —V

71

Tab le 4.5 - Individual Dimension Recalibration Algorithm

Calibration set: 00 02 03 024 05 06 07 08 09 10 11 27
Loopmode : 1 (on)
Reference system : 27
mc grid metric: 6 CPU cycles

Distance of systems from reference system :
System inc mb ib fx fi liii Morm~ 2

27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.33 0.00 — 1.00 —1.00 1.00 0.00 3 .11
6 0.33 —1.00 —1 .00 0.00 1.00 0.00 3 .11
9 0.33 —1.00 —1. 00 — 1.00 0.00 0.00 3 .11

11 0.33 — 1.00 0.00 — 1.00 1.00 0.00 3 .11
0 0.33 —1.00 —1.00 — 1.00 1.00 0.00 14 .11
7 0.33 — 1.00 — 1.00 1.00 1.00 0.00 4.11
8 0.33 —1 .00 — 1.00 —1.00 —1.00 0.00 I4.11
2 —0.67 —1.00 —1.00 —1 .00 1.00 0.00 14~~~~ 14 14

3 1.33 — 1.00 — 1.00 -.1.00 1.00 0.00 5.78
14 0.33 —2.00 — 1.00 —1.00 1.00 0.00 7.11

10 0.33 —1.00 —2.00 — 1.00 1.00 0.00 7.11

Individual dimension clusters:
Farm Systems

mc 0 2 5 6 9 11 27
V mb 0 5 6 9 11 27

ib 0 5 6 9 11 27
fx 0 5 6 7 9 1 1 27
fl 0 5 6 8 9 1 1 27

Hyperplane model coefficients:
Constant mc i-n b lb fx fl
0.20595 —0.01307 0.02859 0.013145 0.01395 0.001485

Error in hyperp lane model predictions of throughput:
System Observed Predicted %Error

0 0.25669 0.23232 9.149
2 0.337614 0,31074 7 9 7
3 0.20186 0.15390 23.76
24 0.22391 0.20373 9.01
5 0.28156 0.26091 7.33
6 0.26681 0.224627 7.70
7 0.282458 0.26022 8.56
8 0.24699 0.22262 9.87
9 0.249214 0.22747 8.73

10 0.19933 0.21887 —9.80
11 0.26642 0.214577 7.75
27 0.30965 0.30960 0.00

72

tried, this method had a larger error bound. The reason would appear to be

that the individual-dimension algorithm neglects some factor interactions

because of the piecemeal approach, whereas the multi-dimension approach

tries to fit an overall model that approximates the interactions as best

as it can. Consequently, the multi-dimension algorithm was the one chosen

for the reca1L~racion procedure of the analytical model.

4.4.7 Bounding the Error of the Analytical Model

To control the global optimization procedure even further, an

upper bound can be computed for the prediction error of the analytical

model at each iteration. If the error exceeds the bound , the predictions

of the procedure can be further checked or the procedure itself modified.

We now develop an expression for a conservative bound, that can be used

for this error checking.

Let us represent points in the system space by the vectors

S
~~~~~~~~~ 

Let the actual performance and cost surfaces be P(S) and

C(S),respectively, both of which are positive . Let the objective function,

which is to be minimized be f(S) = C(S)IP(S). Let the reference system ,

at which the Local optimization procedure begins , be S
r ~~ri’ 

“
~ r5~~

Then the direction of movement of the procedure shou ld be given by the

gradient of f at Sr~ Thus, along the i-th dimension,

vf (S ) ~f(S)
i r

r

— 
._~~_ (C (S))
a5

1 P(S) Sr

ap(S) aC(S)
C(Sr) a5 s P(Sr) as ~i r 1 r

[P(Sr)]
2

V

~~~~~~~ij  
L i

V -~~~~~~~~~~ V V~~~V- -~~V~~~~~~~~ -~~~

73

—

C(S r) ~~i~
5r~ -

P(S r)
VC~ (S)

(P(S)]2

where VP . (S) = ~P(S)
1

and V C . (S) =
ac(s)

1 r as .
1 S

r

Assuming that the cost function is orthogonal, but not necessarily first

order , in its parameters , let

VC .(S) = k.(s .)
1 r 1 ri.

In optimization using the analytical model, the cost function is

assumed to be exact. However VP 1(Sr) is approximated by
~~~~

, the i-th

coefficient of the regression expression. Assuming that P(Sr) is predicted

exactly by the analytical model, the approximation to Vfi
(S
r) is

C(S ) . 
~~~

. - P(S)
. k.(s .)r r i. r i.

i. r [P(S)] 2

Thus , the bound on the error of ~~. is such that c7f .(S) and V f .(S) have the
1 1 r 1 r

same sign, so as to cause the local optimization procedure to move in the

correct direction along the i-th dimension. Applying theorem A.l (see

Appendix A), this is satisfied if

IC(S) . VP (S) - C(Sr)

< IC(S)
~~i~

5r~
- P(Sr)

~~~~~~~ ~o

P(S )
< I9P~(S) 

- 

C(Sr) 
k.(s 2)I 

. (4.1)

- ---- -- V - - -~~~~~~~rn--



74

t However , to use this bound on the error in 
~~~~

, the value of

VP
i(Sr) is required. This can be approximated by considering the broken

hyperplane approximation to the surface. For example, consider the one-

d imensional analytical model in Figure 4.3. Let in
1

and m2 be the slopes

of the two segments of the broken straight line approximation to the curve,

that pass through Sr• Then VP.(S) may be roughly bounded by:

ml > VPi(Sr) ~

If, for VPi(Sr) in inequality 4.1, we substitute an estimate based on in1

and in2 , the bound can be used in practice. The estimate can be chosen so

as to develop either a worst-case bounding condition or an average bound ing

condition. Thus the worst case inequality that bounds is:

max (Im~
-

~i I
~ ~~

-

P(S) . k .(s .)
< m i n (Im ~

-
ri

~,

P(5) . k .(s .)
- C(S)

1 ~~~~~~

A more optimistic bounding inequality would be:

jmean(m1, m2) -

P(S) . kj(s
r i)

< Imean (m1, m2) - C(S)

If we now allow for an error in the model prediction of performance mP(S
r)

the bounding condition is:

V V V V V V V

~

. V .

~

~~~~~~~~~~~~~~~~~~~~~~~~~~



75

Slope :VP (Sr)

SIope~ m2

SIope~,3
0.. ,.. - ISIope~ m1

Si Sr S2
FP—57~7

Figure 4.4 Bounding the slope of the performance curve . 

-V -~~---—-V --V- --



• - - -

76

~mean (m1, in
2) 

-

k ( s  . )
< I mean (m~, in2

) - 
C~ S~~~

’ tnean(p (S ) ,  mP(S ))~

For every recalibration of the analytical model , the error bound

conditions can be calculated as above, for each dimension. The confidence

in prediction is high for those parameters that satisfy the inequality.

For those that do not, one of the following corrective steps may be taken:

1) The direction opposite to that of the prediction can be examined.

2) The recalibration set can be changed to eliminate some possibly

misleading calibration points.

4.4.8 Sensitivity Analysis

~.Jhen the global procedure has converged , sensitivity analysis

must be conducted in the region around the predicted optimum for the

following reasons :

a) To precisely identify the optimum in the region of oscillation.

b) To determine the sensitivity of perforuiance,and hence the

objective function ,to small changes from the optimum system. This may

indicate changes that can be made in the system design , for a very small

sacrifice in performance or cost. Such changes may be attractive to meet

other design objectives. Since accurate predictions of performance are

needed to meet the above objectives, the low-level model must be used for

performance evaluation at this stage.

4.4.8.1 Exhaustive Sensitivity Analysis

This procedure evaluates the performance ,and hence the objective

function,at all the grid point neighbors of the predicted optimum. This is

repeated un t i l  a system which is better than all its neighbors is found.

I~
j Lj  _ 

________ _

~

.-

~

.—- V- ~~~~~~~~~~~~~~~~ ~~ V_ ~ _ V•V_V - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-V .—--- ~~~~~~~~~~ ________



-V-V

77

This system is a local optimum. For example , if the global procedure settles

on (5 , 64 , 8, 2 , 2) as the optimum system, this procedure would evaluate

systems with all combinations of the following parameter values :

mc: 4, 5, 6

m b :  32 , 64 , 128

ib: 4, 8, 16

fx : 1, 2, 3

fL: 1, 2, 3

This would require the evaluation of 35 = 243 systems, for the f i rs t  analysis

• of sensitivity.

4.4.8.2 Single Parameter Sensitivity Analysis

To avoid the large number of expensive calls on the low-level

model required by the exhaustive procedure , a single parameter approach to

sensitivity was adopted. In this procedure, the neighboring systems along

a single dimension are compared with the predicted optimum. If one of

these is better, it is made the new optimum and its new neighbor along the

same dimension is examined. This procedure is repeated until no improve-

ment can be made along that dimension. Each of the other dimensions is

then examined individually , holding all the other parameters constant. If

after one pass through all the dimensions, no change was made to the

optimum, the procedure is stopped. If there were any changes , another pass

is made through all the dimensions.

Examp les of this procedure are given in the next chapter .

4.4.9 Efficiency of the Optimization Procedure

Since most of the cost of using the model hierarchy,  is in the use

of a low-level model for performance prediction , the procedure can be compared

-~~~~~~~~ -- •-- -- - - -V~~~ ~~-- — V • -~~~ —— • -



• 78

with other procedures by comparing the number of calls on the low-level

model. Two benchmark procedures that bound the efficiency are now defined.

a) The Ideal Procedure: In this procedure , the optimum system

is already known. The cost of the procedure is then associated with the

sensitivity analysis around the optimum, which must still be conducted

for the second reason in Sec. 4.4.8. Thus we will assume that the minimum

cost that the system designer must bear is the cost of the sensitivity

analysis in the ideal procedure. The efficiency of the ideal procedure is

def ined as 1. All procedures will be compared with the ideal procedure

• to estimate their efficiency.

b) The Grid Evaluation Procedure: In this procedure, the low -

level model is used to evaluate the performance of all the grid points in

the given region. The best system in that region is then chosen. For our

case-study , we will assume that the region of interest is bounded by the

minimum and maximum along each dimension, that was ever used as a cali-

bration point by the optimization procedure. For example, if the maximum

excursions along each dimension were :

mc: 4 to 12 (9 grid points)

mb : 16 to 128 (4 grid points)

ib: 4 to 32 (4 grid points)

fx:  1 to 3 (3 grid po ints)

f~ : 1 to 3 (3 gr id points),

the grid evaluation procedure would make 1296 calls on the low -level model

to evaluate all the grid points in this region.

- - . - - — -

~

- V ~



79

With these definitions, the efficiency of the optimization

procedure is def ined as

= 
Number of calls to the low-level model by the ideal procedure
Number of calls to the low-level model made by the optimization
procedure.

A lower bound on achievable ef f i ciency is defined as

Number of low-level model calls by the ideal procedure
L = 

Number of low-level model calls by the grid evaluation procedure

Both these estimates are used in the next chapter .

4.5 Adaptation of the General Procedure to the Case-Study

In the previous section, we described a general procedure for

finding the optimum point in a given system parameter space. In this section ,

we discuss some of the choices and assumptions made in applying this procedure

to our case-study.

• 4.5.1 Continuous vs. Non-continuous System Parameters

The choice of a grid on the space was dictated by the desirability

of examining only realistic computer systems. The grid points represent only

such systems. However, for some parameters, points other than grid points also

represent possib le systems. Thus mb or ib can conceivab ly have a value that

is not a power of two. A non-integral value for mc could be achieved by a

finer division of the cycle time. A value of 2.5 for the fixed point unit

architecture may represent a design that is a compromise between the pipe-

lined architecture and dataflow architecture described in Sec. 3.4.6.3.

Thus these system parameters can be approximated by real values. However , in

the local optimization procedure, the Lm parameter is strictly a Boolean

parameter. That is,a system either does or does not have loop-mode . Thus non-

boolean values for Let would be unrealistic.

V V ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
•
~~-— V —-V— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • -V -- —— --- V m - -~-



-- - - V V  ~~~~ V

80

In view of the above , the global optimization was split into

two parts - finding an optimum system on the Let = 0 hyperplane and another

on the Let = I hyperplane. On each of these hyperplanes , a standard multi-

dimensional , real variable optimization procedure was used as the local

optimization procedure to determine the other five parameters of interest.

The better of the optima on the two hyperplanes is then identified as

the optimum system.

• •: In an early version of the optimization procedure , the initial

calibration set for optimization on the Let = 0 hyperplane consisted of only

one system - the normal system with loop-mode turned off. Projections of

the initial calibration set on the Lie = I hyperplane (see Table 4.2) onto

• the Let = 0 hyperplane were used by the procedure in its initial cali-

bratiorz. This approach is a logical extension of the orthogoriality

assumption to the Let dimension. However, the errors in this assumption

were so large as to cause the procedure to move very erratically on the

Let = 0 hyperplane. Consequently , this approach was abandoned and an entire

initial calibration set as in Table 4.2, was used on the Let = 0 hyperplane

as well.

4.5.2 Adaptive Metric for the mc Dimension

• Since the range of the etc parameter is considerably larger than

the ranges of the other parameters, a variable metric was chosen for that

dimension. If the metric were chosen as one CPU cycle , it was expected

that the global optimization procedure would cause very small incremental

moves in the mc dimension. To avoid this , the metric was chosen as six

cycles initially . This explains the settings of 6 and 18 for mc in the

initial calibration set of Table 4.2. However , if this large metric value

• were retained at later stages in the optimization, systems with large

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- 81

V -
differences in mc from the reference system would still be included in

the recalibration set, because the large mc metric makes them appear closer
- -

- (in metric units) to the reference system. Thus the locality of the

-
analytical model calibration is lost. This effect was actually observed

• in an early version of the optimization procedure.

V

To compromise between these two opposing needs, the following inc

• movement and metric reduction rules were adopted :

1) If the movement dictated by the optimization along the mc

dimension is larger than the current mc metric, the reference point is

moved just I metric unit along the inc dimension in that direction. If

the movement dictated is less than one metric , the reference point is

moved to the first integral value of mc, beyond the predicted optimum from

the reference point .

• 2) The initial value of the inc metric is six cycles. This value

may be decreased once every three iterations of the optimization procedure

and is held constant in between. The new value for the metric is chosen

as follows :

If the maximum movement in the last three iterations was equal to

the old metric value (it cannot be grea ter), the metric value is decreased

by I. If the maximum movement in the last three iterations was less than

the old metr ic value, the metric value is reduced to the value of that

V V maximum. The metric is, however , never reduced below 1.

- 3) If oscillation occurs between two calibration points that are more

than one cycle apart in the mc dimension, the oscillation is broken by

~.
reducing the metric by 1.

V V~~~ •~~ V V~~~~~~~~~~~~~~~~~~~~~~~~ V .

-
_

82

By the above procedure, the mc metric will eventually be reduced

to 1, the resolution required of the optimization procedure. The metric

reduction thus progressively expands the mc dimension so as to focus

-
- attention on the region of interest, by excluding points far a-way from

having any effect on the calibration. The rate of this expansion is tied

to the rate at which the optimization procedure seems to converge - which

is indicated by the magnitude of the moves that it dictates. Some examples

of the application of the movement rule for the mc dimension are given

in Table 4.6.

4.5.3 Feasibility Checking

Since only a restricted region of the system space can be

simulated by the control stream model, the local optimization procedure

must be restricted to this feasible region of the space. For example,

f ixed point unit architectures of type 1, 2 and 3 are the only configu-

rations allowed in the simulator. However, we found that enforcing very V

strict feasibility checks such as 1 < fx < 3, allowed the local optimization

very little freedom of movement and caused it to stagnate at some feasibility

region boundaries. To counter this we initially designated the feasi,le

region to be defined by the inequal ties:

0.5<mc <~~

0.5 <mb < =

0.5 < ib <~~~~~

0.5 < fx<3.5

0.5<fL<3.5

83

-
Table 4.6 - Movement in the mc Dimension

-~~~~ .
Example 1 2 3 14

Current mc
grid metric 6 3 2 1

mc component
. of starting

reference
- system 214 9 6 6

I mc component
- of optimum

L system predicted
usin g hy per p lane
model 10.2 7.7 3.6 6.7

mc component
of new reference
system 18 7 14 7

IT
- -V -- -

84

However, as experience and insight were gained in the use of the

optimization procedure, it was decided that applying only the above checks

for feasibility allowed the local optimization procedure too much freedom

of movement, resulting in it exploring regions far beyond the region of

4 validity of the analytical model. For example, on one iteration, starting

at a reference system with ib = 8, the procedure reached an optimum system

with ib = 160. Since the linear dependence of performance on ib resulted

in an exaggerated value of performance at ib = 160, changes in the other

parameters did not appear very cost-effective at that high level of perfor-

mance , and were therefore ruled out by the procedure.

To avoid the pitfalls described above and to restrict the movement

of the procedure to the local region of validity of the analytical model

an additional feasibility region was delineated . Initially this region was

defined to be bounded by grid points one metric unit away from the reference

• system along each direction of each dimension. Thus if the reference system

were (5 , 32 , 8, 2, 2), with the mc grid metric at two cycles, the feasible

region was defined by:

3 < m c < 7 ,

16 ~~ mb < 64 ,

4 < ib < 16,

1 < f x < 3

and l< f L < 3 .

However , this was found to cramp the movement of the procedure severely, and

the feasibility region boundary was extended to include grid points two metric

units from the reference system along each direction of each dimension.

-

-V

85

For the example above, this defines the feasible region by:

- .
l < m c < 9 ,

I

8 < t n b < l 2 8 ,
- 2 < ib < 3 2
-

0.5 < fx < 3.5 and
V

0 .5<fL<3.5.

Notice that the bounds imposed by the simulation range of the control stream

- model are combined with the bounds restricting movement, to arrive at the

overall feasible region bounds.

- - V

86

CHAPTE R 5

DESCRIPTION OF EX2ERfl~1ENTS AND ANALYSIS OF RE SULTS

5.1 Introduction

In Chapter 4, we described a procedure that uses the performance

model hierarchy to optimize the design of a system, with respect to an

objective function that involves system performance. We also outlined some

of the special assumptions made in applying this procedure to the case—

study system described in Chapter 3. In this chapter , we describe the

experiments conducted in this case-study , and analyse the results.

5.2 Software Used

In this section , we list the software packages that were used in

the case-study. Except where otherwise noted , all the software was run on the

• DEC-10 system at the Coordinated Science Laboratory of the University of

Illinois.

5.2.1 The Control Stream Model

To gather the program traces that generated the control streams,

a modified version of the TRACE-360 program , purchased from the University

of Waterloo, was used. This program, which was run on the IBM 360/75 system

at the Computing Services Office of the University of Illinois , outputs the

dynamic instruction execution trace as well as the memory locations referenced

by the instructions of the program being traced. The conversion of the

traces to control streams was done by a program written in SAIL on the

DEC-10.

The simulator of the model was coded in SIMLJLA-l0. Its length is

about 900 lines of code. Execution times of the simulator on the KI-lO CPU

~

~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~ V 
~~~~~~~~~~~ V~~~~~~~~~~~~~~~~ V


AO—A057 no 11.4.111015 1k41V AT URBANA—CHAMPAIGN COORDINATED SCIENCE LAB FIG 5/1

FFI
~~~~~~~~~~~

R!99
D A BO

~~~~~~~~~~

59

I
_ _ _ ________

I _
1

I .0 ~~ ID~
8 ~~~~

l~ID~ 2.2

I . I
llIII~8

~ffl
I.Z5

~I~
j .4 flw~

.6

S

-

~~~~~~~~~~~~~~~~

87

ranged from 12 to 40 minutes for the traces used. A listing of the simu-

lator program is given in Appendix B.

5.2.2 The Analytical Model

The calibration of the analytical model was done by a program

written in SIMULA-lO. This calls the procedure RLSEP of the IMSL library

(1MS75], which selects a regression model using the stepwise algorithm des-

cribed in [DRA66]. As described in Sec. 3.5.2.1, all the five system

parameter factors - mc, nib , ib, fx, and f2 - are forced into the regression

equation. Execution t imes of the calibration program were less than 1 sec.

on the 1(1-10 CPU.

5.2.3 The Local Optimization Procedure

The local optimization was done by a program written in FORTRAN-1O.

This first reads the coefficients of the analytical model and the parameters

of the system cost model. It then calls the procedure ZXflIN of the INSL

library [1MS75], which uses a quasi-Newton algorithm to minimize a function

of n variables. As described in Sec. 4.5.1, the five system parameters mc,

nib , ib , fx and f.~ are treated as continuous variables by the optimization

program. Execution times of the local optimization program were less than

1 sec.on the KI-lO CPU.

5.3 The System Cost Model

A simple system cost model was chosen, which at the same time,

incorporates reasonably realistic cost functions of system parameters. The

model is orthogonal with respect to the individual parameters and expresses

system cost , normalized with respect to a cost of 100 for the actual 360/91

as C(system) 
~
F
cpu

(Co + C~ + C~~ + CfL) + Fmem(M0 ÷ C~~ + C~~,) .



¶1
88

where:

~cpu : CPU cost as a fraction of system cost = 0.57.

C
0 

: fixed cost of the CPU 15 (for the Main Storage Control
• Element section of the CPU)

C. : cost of the instruction unit = 9 + ib/8 ÷ 5 • £m.

C : cost of the fixed point unit = 24 + fx
2

Cf~ 
: cost of the floating point unit = 36 +

F : Memory cost as a fraction of system cost = 0.43.mets

N0 
: fixed cost of the memory unit = 2

Cmc : memory cycle time component of memory cost = 37l.5/mc°~
55

memory bank component of memory cost = 0.1875 . nib.

The division of cost between the CPU and memory is taken from

(BEL71]. Most of the CPU cost functions are based on a rough division of

cost among the various units of the actual 360/91. The cost division

assumed was :

Instruction unit : 157.

Fixed Point unit : 25%

Floating Point unit : 45%

Main Storage Control : 157.

The cost function for the memory cycle time was derived from a curve fitted

to memory speed, cost and size data for various System 360 Models, obtained

from (BEL7I]. The curve obtained was :
0.64

Memory cost 32.9 + 370.0 . 
(memory size)

(cycle time)

where cost is in K$,

size is in multip les of 256 K bytes and cycle t ime is in P.sec.



I
A further assumption that the cycle time accounts for 95%, and the banking

structure for 37,, of the memory cost in the 360/91, yields the above cost

• functions.

5.4 Traces Used in the Experiments

In the optimization experiments that were conducted on the case-

study system, three program traces were used for generating the control

• streams to drive the low-level model simulator. These traces are sections

~f actual program traces obtained as described in Sec. 5.2.1. The traces

are:

a) EI~~N: a program written in FORTRAN-G, to find the eigenvalues

of a 14x1.4 matrix chosen from (GRE69] . It uses the subroutines TREDI

(to reduce the symnetric matrix to a tridiagonal one) and TOLl (to deter-

mine the eigenvalues of the matrix). These two routines were taken from

the Eigensystem Subroutine Package (EISPACK) of the National Activity to

Test Software project. The section of the trace used, was the first four

iterations of the TRED1 subroutine. A sumnary of the instruction mix of

this section is given in Table 5.1. It can be seen that most of the conditional

branches branch back into the instruction stream based on the value of a

counter register, i.e., the program has a large number of instruction loops,

with sizes ranging from 16-1024 bytes.

b) GAIJSS: a program written in FORTRAN-G that used Gaussian

elimination to solve a linear system of equations of order 20, taken from

• (CRE69 ] .  It uses the subroutine GAUSZ , from the EISPACK library , to solve

the system. The section of the trace used was the first four iterations of

the forward elimination loop of CAUSZ. A sumsary of the instruction mix



90

Table 5.1 - Instruction Mix Sunnnary of EI(~N

Total number of instructions: 14395

Percentage mix:

Fixed point instructions: 51.39
Address—to—register loads: 2.02
Register—to—register moves: 8.77
Memory—to—register loads: 9.07
Register—to—memory stores: 5.04
Computational instructions:

On register operands: 17.51
On memory operands: 8.95

Floating point instructions: 40.41
Register—to—register moves: 0.14
Memory—to—register loads: 12.26

• Register—to—memory stores: 5.81
Computational instructions:

On register operands: 12.96
-
~~~~ On memory operands: 9.24

• • Branches: 8.20
Unconditional branches: 0.11
Conditional branches:

On the condition code: 1.21
On a counter register: 6.88
Taken: 6.54

Target back in the stream: 6.46
Mean distance of back—target (in bytes): 114 .59• Histogram of back—target distance (in~ bytes):

• Range Percent
1: 2 0.00
2: 4 0.00
4: 8 0.00
8: 16 0.00
16: 32 10.113
32: 6’I 53.87
64: 128 26.24
128: 256 (‘.00
256 : 512 4.52

• 512:1024 4.52
>:10244 0.43

~~~~~ 

:~
Lit _



91

of this section is given in Table 5.2. This program has about twice the

• percentages of branches in EIGEN. However, only approximately half of these

• are loop iteration branches.

c) ERROR: a scaled-down version of a FORTRAN program, that is used

as a benchmark by the Computing Services Office of the University of Illinois.

A su~~ary of its instruction mix is given in Table 5.3. This program has a

large amount of double precision floating point computation, done in pre-

dominantly straight-line code, i.e., there are very few branches.

5.5 Discussion of Optimization Experiments

* - We now discuss some of the optimization experiments conducted using

• the procedure described in chapter 4, on the case-study system for the traces

described in the last section.

5.5.1 An Iteration of the Global Optimization Procedure

Table 5.4 is an example of the results of a typical iteration

of the global optimizatior procedure. As described in Sec. 4.4.6, the

recalibration procedure chooses a recalibration set from the calibration

set. This is indicated in the top half of the table. The distances indicated

in the table are in terms of the grid metrics for the various dimensions.

The recalibration set is used to calibrate the hyperplane model at the

current reference system. The error in the model for the systems in the

calibration set is printed here for illustrative purposes, but may actually

be used to control the procedure. The coefficients of the model, along

with the cost model parameters described in Sec. 5.3, are fed to the local

optimization procedure, which determines the locally optimum system in the

feasibility region demarcated as in Sec. 4.5.3. The movement rule of

Sec. 4.4.4 is then used to determine the new reference system for the next



92

Table 5.2 - Instruction Mix Summay of GAUSS

Total number of instructions: 19380

Percentage mix:

Fixed point instructions: 38.36
Address—to—register loads: 0.75
Register—to—register moves : 5.61
Memory—to—register loads: 5.98
Register—to—memory stores: 2.98
Computational instructions:

On register operands: 16.60
On memory operands: 6.43

• Floating point instructions: 46.28
Register—to—register moves: 0.19
Memory—to— register loads: 13.90

• • Register—to—memory stores: 6.76
Computational instructions:

On register operands: 14 .77
On memory operands: 10.66

Branches: 15.35
Unconditional branches: 0.0~4
Conditional branches:

On the condition code: 7.60
On a counter register: 7.72
Taken: 14.62

Target back in the stream : 7.67
Mean distance of back—target (in bytes): 1111 .46
Histogram of back—target distance (in bytes):

Range Percent
1: 2 0.00
2: 14 0.00
LI: 8 0.00
8: 16 1.28

16: 32 3.814
32: 64 28.13
64: 128 61.91
128: 256 1.28
256: 512 3.43
512:1024 0.00
>~~1O24 0.13



93

Table 5.3 - Instruction Mix Suninay of ERROR

• Total number of instructions: 13368

Percentage mix :

• Fixed point instructions: 4.19
Address—to—register loads: 0.141
Register—to—register moves : 0.27
Memory—to—register loads: 1.81
Register—to—memory stores: 1.18
Computational instructions:

On register operands: 0.02
On memory operands: 0.149

Floating point instructions: 93.78
Register—to—register moves : 0.74
Memory—to—register loads: 214.0~4

• Register—to—memory stores: 15.62
Computational instructions:

On register operands: 12.37
On memory operands: 41.02

4

• Branches: 2.02
Unconditional branches: 0.89
Conditional branches:

On the condition code: 1.00
On a counter register : 0.13
Taken: 0.10

Target back in the stream : 0.10
Mean distance of back—target (in bytes): 2423.14
Histogram of back—target distance (in bytes):

Range Percent
1: 2 0.00
2: 4 0.00
4: 8 0.00
8: 16 0.00
16: 32 0.00
32: 64 0.00
64: 128 0.00
128: 256 114.29
256: 512 0.00
512:1024 0.00

> : 1024 85 .71



F ~~~~~~~~~~
• 94

• Table 5.4 - An Iteration of the Global Optimization Procedure

• Calibration set : 00 02 03 04 05 06 07 08 09 10 11 514
Loopmode: 1 (on)
Reference system : 54
mc grid metric: 6 CPU cycles

Distance of systems from reference system:
System mc mb lb fx fl im Norm~2• 54 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 —1.00 — 1.00 — 1.00 1.00 .0.00 14.00
5 1.00 0.00 —1.00 —1 .00 1.00 0.00 4.00
6 1.00 — 1.00 —1.00 0.00 1.00 0.00 4.00
9 1.00 — 1.00 —1.00 — 1.00 0.00 0.00 14.00

11 1.00 — 1.00 0.00 —1.00 1.00 0.00 4.00
O 1.00 —1.00 — 1.00 — 1.00 1.00 0.00 5.00
7 1.00 —1.00 — 1.00 1.00 1.00 0.00 5.00
8 1.00 — 1.00 —1.00 — 1.00 — 1.00 0.00 5.00
3 2.00 —1.00 — 1.00 —1.00 1.00 0.00 8.00
4 1.00 —2.00 — 1.00 —1.00 1.00 0.00 8.00

10 1.00 —1.00 —2.00 — 1.00 1.00 0.00 8.00

Recalibration set: 54 2 5 6 9 11 0 7 8

Kyperp lane model coefficients:
Constant mc mb lb fx fi
0.29811 —0.01217 0.016914 0.00180 0.00961 O.O089’4

Error in hyperplane model predictions of throughput:
System Observed P red ic ted  % E r r o r

5)4 0.35 112 0.351409 —0.85
2 0.337614 0.33467 0.88
5 0.28156 0.27858 1.06
6 0.26681 0.27126 —1. 67
9 0.24924 0.25271 — 1.39

11 0.26642 0.26344 1.12
0 0.25669 0.26164 — 1.93
7 0.28 14 58 0.28087 1.30
8 0.24699 0.214377 1.30
3 0 .20186 0.18862 6.56
4 0.22391 0.24470 —9.29

10 0 .1 9933 0.2598 11 —3 0. 3 6

mc mb lb f x  f i
Initial reference system 6. 32. 16. 2. 2.
Opt im um system 7 . 4 2  98 .0 14 11.77 2 .72  2 .54
New reference system 8. 64. 8. 3. 3.

Cost/performance value of the optimum system: 323.3087
Throughput of the optimum system : 0.3752
Memory, CPU and system costs: 61.83 59.147 121.30
Relative memory parameter costs: 123.41 20.38
Relative CPU parameter cos ts :  10. 4 7 3 1 . 4 2  4 2 . 143 5 .00 15.00



I
iteration of the global procedure. Not shown is the application of the

stopping rule, or the possible run of the low-level model for the new

reference system, for future calibration. The cost and cost/performance

values of the locally optimum system are shown purely for illustrative

purposes. The relative memory parameter costs are the costs of memory cycle

time and memory banks, respectively. The relative CPU parameter costs are

the costs of the instruction unit (without loop-mode), the fixed point unit,

the floating point unit, loop-mode and the fixed CPU costs respectively.

In the following sections, we use the following terminology :

1) Convergence sequence: The sequence of reference systems generated

by the global optimization procedure, before oscillation occurred.

2) Sensitivity sequence: The sequence of systems examined , after

convergence , by the individual parameter sensitivity analysis procedure

• 
described in Sec. 4.4.8.2.

3) Sensitivity report: A sunmary of the sensitivity sequence,

listing the sensitivity of cost, performance and cost/performance to the

various system parameters at the optimum system.

The sensitivity sequence will be shown for only one experiment,

since the others are very similar and, consequently not very informative.

5.5.2 Experiments on EIGEN

The EIGEN program was run on various system configurations

for experiments 1 and 2.

5.5.2.1 Optimization on the Ltn = 1 hyperplane

Since EI~~N was the first trace that the experiments were tried

on, the optimization was run for three different starting points on the Lm’~l

hyperplane , in an attempt to establish confidence in its convergence.

__ Li



• 

—

~~

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

96

• 5.5.2.1.1 Experiment la:

Table 5.5 lists the convergence sequence with the starting point

at the normal system (parameters: 12, 16, 8, 1, 3) on the Lm — I hyper-

plane. Notice that the mere repetition of a calibration point as a

reference system does not indicate oscillation. Thus the repetition of

system 18 on iterations 11 and 13 does not constitute an oscillation,

• because iteration 12 introduces another reference system, 60, for possible

inclusion in future calibration sets, which may change the analytical

model based at system 18. That this does happen is shown by the fact that

the model in iteration 14 yields a new reference system, 61. Thus a pair

of reference systems must be repeated twice in succession for an oscillation.

Table 5.6 lists the sensitivity sequence for this experiment. The

sequence starts at the better of the two systems involved in the oscillation

that ended the convergence sequence. Parameters are perturbed individually

and the base system is changed if a decrease in cost/performance is achieved.

The procedure is continued until a pass through all the parameters causes no

change to the base system.

The optimum system reached is (6, 32, 8, 3, 3). It is interesting

to note that the optimization procedure reaches an oscillation hypercube

containing the optimum value for all the system parameters except f 2 .

Table 5.7 which lists the sensitivity report for this experiment, shows

that the projections of both the performance and cost surface (and conse-

quently the cost/performance surface) onto the U coordinate hyperplane are

quite flat in the region U 2 to 3. We believe that this slope is

within the regression error bounds of the procedure, thus causing the

optimization error. We discuss this further in Sec. 6.3.1.
•

Table 5.5 - Convergence Sequence for Experiment la on EIGEN

Iteration Reference Reference System Parameters
System

mc mb lb fx fi

0 0 12 16 8 1 3

1 54 6 32 16 2 2

2 55 8 64 8 3 3

3 98 7 128 16 3 3

14 99 5 64 8 2 3

• 5 100 9 128 16 3 3

6 101 10 256 8 3 2

7 58 6 128 16 3 1

4 8 28 5 64 8 3 2

9 36 8 128 16 3 1

10 102 9 64 8 3 2

11 18 6 32 16 3 1

12 60 8 614 8 3 2

13 18 6 32 16 3 1

iLl 61 8 16 8 3 2

15 18 6 32 16 3 1

16 15 7 6. 8 3 2

17 18 6 32 16 3 1

18 15 7 6~4 8 3 2

Oscillation
Hy p e r c u b e 6 :7 3 2 : 64 8 :16 3 1 :2

—
~~~~~

_ , —-I-i•.~~~••• , • _•_ •••_ -• • — -•
~~~

—-
~~

-- • • -•-
~~

98

• Table 5.6 - Sensitivity Sequence for Experiment La on EIGEN

System System Parameters Cost/Performance

mc mb lb f x f l

Base - -> 15 7 64 8 3 2 303 .29

63 6 64 8 3 2 299.98
• 60 8 64 8 3 2 309 .23

28 5 6’4 8 3 2 303 .63

Base --> 63 6 6)4 8 3 2 2 99 .98

• 72 6 32 8 3 2 296 .21
• 73 6 128 8 3 2 3 1 1 . 5 1 4

714 6 16 8 3 2 3 10 .75

Base - -> 72 6 32 8 3 2 2 9 6 .21

75 6 32 4 3 2 368.07
• 76 6 32 16 3 2 3 13 .45

• 77 6 32 8 2 2 327 .19

• 78 6 32 8 3 1 2 97 .33
• - 79 6 32 8 3 3 2 9 1 . 7 2

Base - -> 79 6 32 8 3 3 2 9 1 . 7 2

End of Pass 1

Base --> 79 6 32 8 3 3 2 9 1 . 7 2

88 5 32 8 3 3 294.19
89 7 32 8 3 3 295 .6 9

95 6 16 8 3 3 306 .26
108 6 611 8 3 3 2914.93

96 6 32 14 3 3 36 9 .34
27 6 32 16 3 3 309 .06

97 6 32 8 2 3 323. 46

72 6 32 8 3 2 295.21

End of Pass 2

O p t i m u m
System 6 32 8 3 3

.— N- ‘C C’J N- O~ N- r~ t— 0 ~~ N- en C\J N-
• 4.3 ~~

.
• 4.) ~~ L(~ ‘C .— ~ t U~ 0 .— 0 ‘ N- ‘-0 ’—

0 ~) 0 0 0 0 0 0 0 ~0 0 0 (\J 0-’ C~’ 0—’ 0’
C..) ~~ C\J C’.J C.4 ~~~ (\J ç~J en en C\4 en en <‘~

z

~~~O E
• CU L .~ 4 ~~ 00-’  C C —  C\J (‘¼J 0 LC~ en 0 • t— en C

. CG ~~ 4.3 . . . . . . . . . . . .
• • C) 0. ~ 0 en ‘-C  (“4 ‘—0 00 0  (‘4 0 en C\J 0

• .0 4.) ~~ 0 + I I + +  I + I I I
—

c’~ en ~ ~ en.- N- ~~ t~n C ~~ en N- ~~(5 CU 0-’ ~0 N- en ~c c\~ en en ‘C ~~ c— ‘C C N- ‘C
IS en +) Q 

~~
. c en ~~ N- C\j ~~ ~~ ~~ C .—  ~~• — a en c’~ ~

— C’J C\j C~ en C~4 C’.j C”.j C\j (‘-4 (‘4 C~\J C\4
0) C .— — .— — . .- r- .— .— .— ,— .— .— *— r-
U

E 5) ~en
- 5) ~~~O E  (‘-I 0-’

0. ‘- 0 C) CU S.. • C’~J C (‘4 N - C O  en • 0 (‘J • C W~ ~~ C

• m a c. =- C LC’ LC~ C .— .— (\~ 0 Lr~ ‘— C Lç~ en 0
~~ 0 + I I + +  I I I I I

• 0 5-.
4.4 0

5) ~~ ~-4 C C\4 ‘ N- (‘4 (fl  0- ’ N- (‘-4 .— Lf~ (‘4 CC) .— C’)• I U S.. CU N- LC’ (‘~4 N - .-  (‘4 ‘-0 N- ~~ ~0 N- en .— N-
a) ~ ~~

- C’) 0 0 ‘N en en en c’.j o ~
— (-4 0 —

0. >~ o.. + ~~~
- 

~~~
-

~~~~ ~~~
- 

~~
- 

~~~
- en ~ ~~~

- en ~~
-

~~
-

~~
-

~~~
• 5) C) . . . . . . . . . . . .

C 0 00  0 0 00  00 0  C O  0 0 0
E

• U E
>
U 

~~~ en en en en en en en en en en en en .— (‘•j en
0 u~

Cfl -4.))
~ en en en en en en en en en en C’) en en en en

a) ‘-I E
CU

• 1.. .0 ~~) ~~ CC) ~~ ‘C• Ir~ (5 • 4

5) 0..

• E .0 C’.j (‘4 (‘4 ‘C C’) ~~ ~~ ‘N (‘4 ‘NC ’) (‘j (‘j
IS a) E en en en .— en —C) C’) en en en en en en en en

.4.)

>-, C) LI~ ‘C N- ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C
C’) E

E
a) ~~ 0’ 0’ LC’ 0’ en ‘C C’ N- N— 0-’ ~~ ‘N 0’
+3 N- ~~ 0\ N- 0 tf~ 0 N- (\4 C’ N- N- N. N-
5’) ‘— .-

100

5.5.2.1.2 Experiment lb

In this experiment, the procedure was purposely started at a

point very far away from the optimum reached by experiment la - viz.

(18, 8, 4, 1, 1). Table 5.8 lists the convergence sequence for this

experiment which eventually reaches the optimum system (6, 32, 8, 3, 3). In

this experiment, the procedure reaches an oscillation hypercube containing

the optimum value for all the system parameters except mb. The sensitivity

report in Table 5.7 (the same as for experiment La), indicates that the

projections of the cost, performance, and hence cost/performance, surfaces

onto the mb coordinate hyperplane are also very flat in the region ml, = 32

• to 64. We believe this, too, to be within the regression error bounds of

the procedure.

5.5.2.1.3 Experiment Ic

In this experiment, the procedure was started at yet another

pc~nt on the Lm = 1 hyperplane (18, 16, 8, 1, 3). This is one of the points

in the initial calibration set. Table 5.9 lists the convergence sequence

for this experiment. It will be observed that the optimum hypercube reached

is substantially different from experiments la and ib , in the mc dimension,

10:11 against 6:7 and ‘:6. The reason for this becomes clear from looking

at the sensitivity report for this experiment in Table 5.10. The system

• (10, 32 , 8, 3, 3) is seen to be a locally optimum system, on the evidence of

the rough analysis conducted by the individual parameter sensitivity procedure.

Figure 5.1 is a plot of the projections of the performance and cost/perfor-

• mance surfaces Onto the mc coordinate hyperplane, with the other parameters

fixed at (32, 8, 3, 3) respectively. The plot clear ly shows the anomalous

behavior of the cost/performance surface, along the mc dimension that led

the procedure to find a local optimum in this experiment.

101

Table 5.8 - Convergence Sequence for Experiment lb on EIGEN

Iteration Reference Reference System Parameters
System

• mc mb lb fx fl

0 32 18 8 ‘4 1 1

1 103 21 16 8 1 1
• 2 1014 24 32 16 2 1

3 51 18 64 32 3 1
14 105 13 128 16 2 2
5 106 15 614 32 1 3
6 107 10 32 16 2 2

• 7 108 6 64 8 3 3
8 109 8 32 16 3 3
9 108 6 6’4 8 3 3

10 110 8 128 16 3 3
11 108 6 614 8 3 3

• 12 11 1 8 32 16 2 2

13 112 6 64 32 3 1
1~4 1 1 1 8 32 16 2 2

15 113 7 16 8 2 3
16 27 6 32 16 3 3
17 13 7 64 8 3 3
18 69 6 128 16 3 3
19 28 5 6 11 8 3 2
20 96 6 32 4 3 3
21 114 5 64 8 2 2
22 115 14 128 15 3 3
23 28 5 64 8 3 2
24 69 6 128 16 3 3
25 28 5 64 8 3 2
26 69 6 128 16 3 3

• Oscillat ion
Hypercube 5:6 64:128 8:16 3 2 : 3

102

Table 5.9 - Convergence Sequence of Experiment lc on EIGEN

I t e r a t i o n R e f e r e n c e R e f e r e n c e System P a r a m e t e r s
• System

mc mb ib • fx fl

0 3 18 16 8 1 3
1 116 12 32 16 2 2
2 117 7 614 32 3 3

• 3 12 9 32 16 2 2
‘4 13 7 6)4 8 3 3
5 56 6 128 16 3 3
6 118 10 614 8 2 3
7 56 6 128 16 3 2
8 119 10 611 8 3 3
9 120 6 128 ‘4 3 2

10 121 9 64 8 3 3
11 122 11 32 16 3 3
12 123 1)4 64 8 3 2
13 12~4 12 128 16 3 3
1~4 125 13 6~4 8 3 3
15 126 11 128 16 3 2
16 127 10 64 8 3 1

V • 17 128 9 128 4 3 2
18 1 29 10 6’4 8 2 1
19 13 0 1 1 32 1 6 3 2
20 131 10 614 32 3 1
21 132 1 1 32 16 3 1

• 22 133 10 64 8 3 2
• 23 1314 11 32 16 2 1

• 24 135 12 16 8 3 1
25 136 13 32 16 3 2
26 137 12 64 32 3 1
27 138 13 32 16 3 1
28 139 12 16 32 3 2
29 1314 11 32 16 3 1
30 133 10 6~4 8 3 2
3 1 13 1 4 1 1 32 16 3 1
32 133 10 6’l 8 3 2

Oscillation
Hypercube 10:11 32:6’4 8:16 3 1:2

103

0)
C) 0) E
~CU ~~~O E 0 C’)• E CU I. ~~ ~~ C ~~ • C ~~ • 0’- ‘C C ~~ 0S.. .C~~~~+3 • . . 0~~~~~~ 0 ’ . .
o cj 0. .—o en — 0 0 en 0— N- 0 ‘— 0

~~ 0 + + + + + + + +
5-
a)

• 0. — en ~ ~~ 0 CC) ‘C ‘C u~ ‘C C C) C ~~CU C’ N- C’) en N- C’ ‘-N - C N- C N-
4) ~~ • • • • • • •

• CU +3 0 ‘C N- C’ ‘C N- N- ‘C 0 0 ‘C — ‘C
o a — 0 .— en 0 0 C’~J C — en 0 .— C
o ~ en en en en en en ~~

- en en en en en en

(5 5- . LC’ 0 .— ‘N 0 ~~ (-4 0 U~ ‘C 0 ‘C 0o
•~~~C•.i 4) . . . • . • • • • •

C) C) 0. (\. JCC ’) . —0 ’N 0 0 0 ‘N C ‘N O
— 43 ~~ C) + I I + I + I I

CU
U o
5) 0 .—I ‘- ‘N C’J en C~ C ~~ ‘N 0’ N- C’) N- C’)

CU N— 0 N-— N— 0 ‘C N- C LC~ .— O ‘— C
en •

I-’ - 43 (‘J O t — C C) O ’N C’0 0 N -C N -C
en C) — -- 0 0 —. - C. - . - 0’- 0 .—
- C . .- ‘- e- v - e — . - .— .- .- -.-

cC

‘No en 5) E
—

0 5) C O E ‘CC) ~— C) (5 5- ~r4 .- 0 en • 00 • C ‘C L(’ 0 0 0
~ ~~ ~~ +3 • C • . cC . . .

CU C) 0. ‘— C L(’ — 0 ‘N ‘N 0 0 0’ 0 en C
E bk 0 + I I + I I I I

5) 1~.4 E 0
• 5) 4.q .-f ‘C ‘C ‘C ‘C C’ ‘C ‘C N- ‘C ‘C ‘C

+3 5- CU ‘N cC C’ C cC i.(~ ‘C cC ‘-C ~~ cC cC
CU 5) ~ ‘C LC\ en ‘N LC\ ‘C I.C’ IC’ L(\ ‘N IC’ ~~ IC’

5) 0. .1.3 en en en en en en (
~ en en en en en en

00 C’) C) • . . • . .
5.1 C 00 0 C C C C C C CC 0 0

E

o E
• 0

4.)
0. ,-~ en en en en en en en en en en en ‘N en

0 0 Cl) C,.l

— 5-.
5)
4) en en en en en en en en en ‘N en en en

5) a) Cl_s

— E
.0(S L .0 CC) cC cC cC cC cC cC ‘C cC cC cC cC

(5 ...4
0.

• E .0 ‘ N ’ N ’ N ‘C C\4~~~ ‘N ’N C\J ‘NC’) ‘N C ’)
a) ~ en en en .— en ‘C en en en en en en en
4)
CU
>5 C) C ’0 .— 0 00 C O O 0 0 00

V) E — .— .— .— .- .— r— r- .— e- e.-

E
en .- CU ‘C.- C’ N- — cC C ” — LC~.-

+3 ~~
-

~~
-

~~- ~~
-

~~~
.

— ~~
. 

~~~
-

~~~
- 

~~ ~~- ~~- ~~
CU ‘ . -  ‘— .- ‘  .— .- .—

>5
5/)



104

I I 0.50
o Performance

• 400 - ~~~ Cost/ Performance

• 390 - —~~~~Normal System —~~~ 

- 0.45
• 380 -

370 -

360 - - 0.40 ~,

E 350 - •
~:~~~

0• ~+— ~ - ~ —f_s
• Q ) -

~~A,~~ 
‘

~
.

• - Q. ,
~~~t’~J -

•2)
— 4, - 035 H

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ I SYs:~~~~~~ 

°~~°

2803 ~ ~ 10 ~ 
0.25

mc

Figure 5.1 Projections of performanäe and cost/performanc e
surfaces onto the mc coordinate hypar-plane for
EI~~N.

LL~~~~



105

We believe that the main reason for the procedure arriving at

this secondary local optimum, is the shortening of the mc grid metric

just when the procedure happened to be exploring the region of the secondary

(local) optimum. The purpose of gradually shortening the mc grid metric

was to force the procedure to maintain a global perspective during the

initial stages, when it has a very small calibration set, but to increasingly

localize its perspective as the possible choices for the recalibratiori set

increase. For experiment Ia and lb , this shortening happened when the

procedure had reached the region of the global optimum of Figure 5.1. For

experiment lc however , some regres sion error resulted in the procedure being

nearer the local optimum, when the inc grid metric was being shortened. This

can be seen by comparing the mc values of the reference system on iteration

12 of the three experiments - they are 8, 8 and 14 respectively . Localizing

the perspective then rendered the procedure incapable of looking beyond the

region of the local optimum.

The performance and cost/performance of the normal system are also •

indicated on Figure 5.1 to illustrate the flatness of the cost/performance

surface near the optimum along the mc dimension.

Here again, the error of experiment 1 along the f2 dimension has

re-occurred, and for the same reason.

5.5.2.2 Experiment 2: Optimization on the Liii 0 hyperplane

This experiment was conducted by running EIGEN on systems that

had the loop-mode feature turned off (Liii 0). The starting point was the

otherwise normal system (12 , 16, 8, 1, 3). Table 5.11 lists the con-

vergence sequence for this experiment and Table 5.12 is the sensitivity

report at the actual optimum system (6, 32 , 8, 3, 3). The oscillation

hypercube reached by the procedure does not contain the optimum value for



Table 5.11 - Convergence Sequence for Experiment 2 on EICEN

• I t e r a t i o n  Re fe rence  R e f e r e n c e  System P a r a m e t e r s
System

mc nib ib  fx fi

0 1 12 16 8 1 3
1 38 9 32 1 6  2 2

2 39 6 64 8 1 1

3 40 7 128 16 1 2
4 41 4 6)4 8 2 3
5 42 6 32 14 3 2
6 143 5 16 8 2 1
7 14 14 6 32 16 3 1
8 145 5 16 32 2 2

• 9 46 4 32 16 1 1

10 43 5 16 8 2 1
11 147 6 32 ‘4 3 1
12 148 5 62 4 2 2 2
13 149 6 32 ‘4 3 3
114 57 7 16 2 2 2
15 60 8 32 4 3 1

16 61 9 64 8 2 2
17 62 8 128 16 3 1

18 63 9 614 32 3 1
19 12 8 32 16 2 2

20 64 7 64 8 3 3
21 65 8 32 16 3 3
22 64 7 614 8 3 3
23 66 8 128 16 3 3
2~4 67 9 6’4 8 3 2
25 66 8 128 16 3 3
26 67 9 64 8 3 2

O s c i l l a t i o n
H y p e r c u b e  8:9 64 : 1 2 8  8 :16  3 2 : 3



107

a)
C) 5) E
C
CU n O E  0 ‘C ‘N
E (5 5- ..-. ‘-.0 0 cC ‘C cC C ~~ ‘C • 0 • C N- C’ 0
5- c_s . . . . • . . • .— . C’ C .
0 C) 0. O C ’ N e n  u~ooen ‘ N O —  — 0  0 0 0

4-s ~~ 0 + + +  + + +  + + + + +
5--
0)
0. — ‘N cC N- 0~ C’ cC cC C’ en cC — ‘- c C  C’ C’ CC)
~ -.. CU IC’ IC’ C 5-C’ ‘— IC’ U) Lf\ ~~ IC’ ~~ ‘C IC’ N- en 5-C’
4) . . . . - • . . . . . . . . .

C/) 4) ‘C ~~
- en IC’ ‘N ~~ IC’ LC’ U) ~~ ~~ ‘C N- ~~

-

0 C) 00’- .— ‘N 0 0’—  ‘C 0 ‘C en 0 0 0 0
0 C en en en en en en en en en en en en en en en en

a) E

Z (U 5-.. ..-4 ‘N 0 0 ‘N .- 0 .— 
~~ C’) 0 IC’ en C t— en 0

. .. •  . •-  . .  . .

C) 0. IC’ C ~~ N- .— 0 ‘N ‘C 0 0 0  ‘N C en ‘N C
+3 ~~ 0 + I I  I + +  I + I I I
CI)
0o C.) — N- U) en 5-C’ C’ cC ‘C ‘N C’ U) ifs en cC ‘N en ~~CU C N- C’ 0 ~~ N- en IC’ ~~ N- en C’ N- ‘NO’ N—

en U) .- ‘C en C — -~~~ C’ ‘- ‘- ‘N cC’- N— cC’-
C) ‘N ‘N.-- .— C’) ‘N ‘N C’) ‘N (~ ‘N — ‘N ‘Nen C .— . —. -~~~~~~ .-- . — .-  — ,— .— .— .— .--

—4
U)
-

0. ‘N a) E
en
- 5) C O E  en 5-C’ o —

‘C C) CU 5-. - IC’ C ‘C • Ifs 0 N- N- • C . . C ~~ C’) 0
o C .~~ Cl-s +3 • • . en . • . . N- - ‘C .— •

• “4 (5 C) 0. ~~ 0 ‘C —  ‘C 0 — ‘N .— 0 —  — 0 -~~~ en C
U E ~~ 0 + I I  I + +  I I I I I

4 5.4 S..
o 0
0. 5) s-I U) CC) 5-C’ U) 0 U) ‘C ~~ U) CC) N- ~~ U) — C ’  U)
0) 

~~.) 5-. (U N- 0’ en ‘C ~~ - 0’ ‘C 0 0’ 0’ 5-C’ -~~~ C’ ‘N ‘C 0’
CU a) ~ ‘— C’ N- ~~

- N- 0’ 0 —  ‘N C’ en Ifs C’ cC U) 0’
>5 0. +3 ~~ en en en en en ~~~

- ~~ en en en en en en en enC’) C) . . . .  . . . .
-.4 C 0 0 00  0000  0 0 0  0 0  000
> E—4
‘-I‘-401 -.4

.4.)
0. —4 en en en en en en en en en en en en en — ‘N en
0 Cl) Cl_s

I 5-
5)

.1..) ~ en en en en en en en en en en en C~ en en en en
— 5) Cl_s

5) 5- .0 cC U) U) U) CO U) U) CO ~~ CO ‘C U) U) U) cC U)
— CU --1

• .
~~ 0.

E .0 ‘N ’N ’N ’N  ‘C’N~~~ U) ‘N C\J C’) ‘N ’N  C’s J ’ N ’ N5) E en en en en .— en ‘C ‘N en en en en en en en en4) —
Cl)
>5 C) IC’ ‘C N- U) ‘C ‘C ‘C ‘C ‘C ‘-0 ‘-0 ‘.0 ‘0 ‘0’C ‘CC/) E

E
a) 00”—  ‘C ‘N C’ en t— C’ 0’ ~~ IC’ 0’ ~~ en C~4.) cC N- U) cC U) N- U) CO CU N- U) CO N- N- N- N-
CU
>5

Lii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
••



108

two-dimensions - mc and nib. In both cases, the flatness Df the projections

of the cost/performance surface onto the coordinate hyperplanes are seen to

be quite small, and are pos sibly within the regression error bounds of the

procedure.

5.5.2.3 Analysis of the optimum architecture for EIGEN

Experiments 1 and 2 show that the optimum system for EIGEN is

(6 , 32 , 8, 3, 3) on the Lm = 1 hyperplane. We now analyze this architecture

in more detail.

5.5.2.3.1 Orthogonality of the cost/performance surface

The shape of the cost/performance surface seems to be fairly

orthogonal with respect to its system parameters. This is illustra~Qd by

• the fact that the optimum system is (6, 32 , 8, 3, 3) on both the Liii hyper—

planes. Further , the local optimum reached in experiment lc, was different

in the mc dimension (10 as opposed to 6). But this did not affect the

optimum values for the other parameters , viz (32 , 8, 3, 3). This seems

to indicate that there is very little interaction between the parameters

near the optimum on the cost/performance surface.

5.5.2.3.2 Instruction unit issues

Loop-mode is indeed cost effective by to a surprisingly small

extent. Thus in the optimum system (6, 32 , 8, 3, 3), removing loop-mode

causes a performance and a cost/performance degradation of only 6.4~ and

4.47.. We expect that this difference would be even smaller , if a cache,

which is a cost-effective technique of achieving an even lower memory

cycle time, were used. The small contribution that loop-mode makes to

performance also explains why the optimum system on both the Liii hyperp lanes

had the same values for the other system parameters , viz (6 , 32 , 8, 3, 3).



109

In particular, it is intei esting that the optimum ib value is

8 on both the Lm hyperplanes. The choice of the most cost-effective

value of ib involves a tradeoff between three factors. The necessity to

maintain a degree of look-ahead sufficient to ensure a high instruction

supply bandwidth, demands a high value of ib. So does the possibility of

holding increasingly larger instruction loops in the buffer with loop-mode

However , the occurrence of branches renders a number of prefetched instruc-

tions superfluous. Since the fetching of these instructions uses critical

resources such as memory b anks, the high occurrence of superfluity argues

for a low degree of prefe tch, i.e., a low value for ib. We will illustrate

this tradeoff on EI~~N.

With Liii = 0, the buffer is used solely to hold prefetched instruc-

tions. The optimum value arrived at for ib is 8. Table 5.12 indicates

that reducing ib to 4 degrades performance by as much as 17.57., because
- - it drastically reduces the instruction supp ly bandwidth. However,

increasing ib to 16, causes a comparable degradation in performance (167.)

due to the increase in superfluity. Thus ib = 8 represents the choice

that best trades-off these two factors.

With Liii 1, loop-mode enters the tradeoff considerations . But

here again, the optimum choice for Lb is 8. Table 5.7 shows that if

ib = 4, the buffer is neither large enough for an adequate instruction

supply bandwidth in non-looping situations, nor is it large enough to hold

any loops (the buffer can hold 4* ib bytes of instructions - see Table 5.1)

hence the performance degradation of 21.2%. However, increasing ib to 16

a lso causes a performance degradation of 5.27.. This is despite the fact

that 64.37. (see Table 5.1) of all the looping branches in EI~~N have a



- -7
110

target distance of less than 64 bytes (against 10.47, for 32 bytes). The

• degradation due to superfluity is evidently greater than the increased

bandwidth due to loop-mode. This suggests that loop-mode is really cost-

• effective only for small loops , where the branch decision and target

fetching time forms a large percentage of the loop execution time.

5.5.2.3.3 Execution unit issues

• A high bandwidth fixed point unit is vital for performance. This

is indicated in Table 5.7, by the fact that reducing fx from 3 to 2 causes

an 11.97. degradation in performance and a 10.9% degradation in cost!

• performance. On the other hand, fL has a much smaller effect on system

performance and cost/performance. Thus reducing fL from 3 to 2 causes

only a 3.87, degradation in performance and a 1.57. degradation in cost/

performance. This can also be seen from the convergence sequences, where

• fx stays fairly steady at 3, while fL moves unpredictab ly over the range

I to 3.

We believe that this is linked with the fact that the proportion

of fixed to floating point instructions in EIGEN is 1.3:1. We will contrast

this with GAUSS in Sec. 5.5.3.3.

5.5.2.3.4 Memory issues

Table 5.7 shows that the latency of the memory has a greater

influence on performance than its bandwidth. Thus increasing the number

of banks from 32 to 64 (128), causes a mere 1.0% (1.37,) improvement in

performance. This suggests that the number of memory conflicts has not

decreased substantially upon increasing tub . However reducing mc from

6 to 5 , causes a performance improvement of 4.2%, which is substantially

more than the effect of nib.

_ _ _  •



-~~~ _ _ _ _ _ _ _ _

111

- 5.5.3 Experiments on GAUSS

Experiments 3 and 4 deal with the GAUSS program run on various

system configurations.

5.5.3.1 Experiment 3: Optimization on the Liii = 1 hyperplane

Table 5.13 lists the convergence sequence for this experiment,

with the starting point at the normal system (12, 16, 18, 1, 3)  on the

Liii = 1 hyperplane. The procedure converges fairly rapidly compared with

the EIGEN experiments. It is also interesting to observe that the procedure

examines a much larger range (8 to 128) along the ib dimension than it did

for EIGEN (8 to 32). This is because of the greater effect of loop-mode

- ! which we discuss in Sec. 5.5.3.3.

For this experiment Table 5.14 lists the sensitivity report about

the final optimum (4, 16, 16, 3, 3). Thus the oscillation hypercube

reached by the procedure does not contain the optiminn value for two-

dimensions - mc and fx. Here again, the flatness of the cost/performance

surface projections onto the coordinate hyperp lane s possib ly explains the

errors - since the slopes seem to be within ~he regression error bound~ of

the procedure.

5.5.3.2 Experiment 4: Optimization on the Liii = 0 hyperplane

In this experiment, conducted using systems on the Liii = 0 hyper-

plane, the otherwise normal system (12, 16, 8, 1, 3) was again used as the

starting point. As in the previous experiment, the procedure converged

fa irly rapidly. The convergence sequence is listed in Table 5.15. In

direct contrast to experiment 3, the ib range examined was very small and

in the opposite direction from experiment 3 (2 to 8).

For this experiment, Table 5.16 lists the sensitivity report

about the optimum system (4, 32 , 4, 1, 3). The oscillation hy-per-



112

Table 5.13 - Convergence Sequence for Experiment 3 on GAUSS

Iteration Reference Reference System Parameters
System

• mc mb lb fx fl

0 0 12 16 8 1 3

1 12 13 32 16 1 2

2 13 8 16 32 1 3

3 114 6 32 6~4 1 2

14 15 7 16 128 1 3

5 16 9 32 6~4 1 2

6 17 8 6’4 128 1 3

7 1~4 6 32 614 1 2

4 8 15 7 16 128 1 3

9 18 5 32 128 1 2

10 19 6 16 64 1 3

11 20 7 32 32 1 3

12 19 6 16 64 1 3

13 21 5 32 32 1 3

114 22 6 16 16 1 3

15 23 5 32 8 1 3

16 22 6 16 16 1 3

17 21 5 32 32 1 3

18 22 6 16 16 1 3

19 2 1 5 32 32 1 3

Oscillation
Hypercube 5 : 6  1 6 :32  1 6 :32  1 3



113

41)
C) ‘- E

• 
- C ~~~~~~~• CU c O E  ‘.0 N—

E cU 5- -.4 C ’ J CC C  .c-.oen .oen — ‘-- 0 • C
• S.. .C Cl-. 4) - . - - - - — - • - - - c -

o ~i 0. 0’ 0 ’— ~~ — 0  C C’) C IC’ ~~ 0 0  — C
Cl-. ~~ 0 + + +  + + + + + +  +
5-
5)
ii. C U~ U) C C’) IC”-O ~~ Ifs U~ C C’ IC’ 5-C’ 5-C’
-

~~ CU ‘C C cC ~~ en C IC’ en C ‘C — ~~~
- C C’ C

4) ~~ 
. . ..  ...

Cli +3 U) ~~
- 0 en — ~~ - Lfs CO -~~~ C’ ~~

- 
~~~ ~~ 5-C’ ~~o C) (\J CO C’ C C’ U) U) U) U) C C U) U) en ~~0 -~~~ Ifs ~~ ~~ IC’ ~~~ ~~~

-
~~~

- us  ~~~
- IC’ Ifs ~~ ~~ u ~~

W E

C O E  N-
CU 5- ..-4 C’) C C’) • LC’ C C’ ~~

- C U) en — C — C
.0~.44) . . - C . . . . . . . .

• C) 0. 0’ C’.O — C C C 0 00  en c~ C C’J o
+3 ~~ 0 -I- I I  I + I + I I  I
U,
0
0 ~~ U) C C — ‘C C C’  en 0 ~~ ~~ 5-C’ 0 IC’ C

CU IC’ CO C’) 0’ — CO 0 C’) CO 0’ (‘-4 0 U) C’ U)
o en . . . . . . . . . . . .

• 4) U) 0 en CO U) 0 U) U) 0’ ~~ Ifs U) Ifs U)
• en C) w. en en C’) en en ~~~

- en en en en en en en en
- I— I~~ r~ — — — — — ~~~~~ — — — — —‘0

0)

-~~ ‘C W E
~C E ~~~- 0) C O E  C’) — IC’

0 (U S.. -.4 C 0 5-C’ • C C’.0 • C en C’) C’) C - C
C ~~ (.~ 4) . . - . . - U) . . . . . -
CT) C) 0. C O  N- ‘— C’) C 0 — C ~~ N- (~J C — C
E ~~ 0 I i  I + I i i io

“4 E 0
~.j 41) (~. s-I U) cC (‘-4 — (\J U) IC’ C U) ’0  en’-O U) N- U)
1.’ 4) 5- CT) ‘.O ~~O LC”C — ‘0  U) LC”C ~~ ‘00 ’C  en’.oo Cl) 41) ~ cC U) ’.O ~~ U) ~ en ~~ N— ‘.0 U) U) 5-C’ U)
0. 4) C’) C’) C’) (‘4 C’) C’) (‘j C’) C’) C’) C’) (‘4 (‘4 (‘4

C/i C) - .
0 0 0 0  C C C  0 0 0  C C C  CC

E1.)
E
..4

1.~ 0. s-I en en en en en en en en en en en en en c-~
j en

01 Ui Cl-.
S..

(Il a)
+3 en en en en en en en en en en .— c’~

j en en en
I 41) Cl-.

E$ Cii
S.. .0 ‘-O ’C ‘.0 ’C ‘C ~ O ’C C’) ‘C ~~O ’C ‘C ’C

41) CT) .,-I .— .— r — , .- .— en . — — —
- 0.
.0

E .0 ‘.0 ’-.O ‘C ‘C U) ’.0 C’) ‘0~C’0 ‘C’.0’0 ‘.0’0
5) E .— .— r ,- — en .- — ‘ ‘ _ — —
.4.)
U,
>5 C) en -~ LC”C ~~ ~~~ -~~~ ~~~Cl) ~

5) C’) — en C’ en.- ~~ Ifs — ‘C N-C”  U) —
4) en ~~~

- 
~~

- 
~~~ ~~~ ~~~

-
~~ ~~

- en ~~ ~~Ui
>5
C’)

a

LL~~i ~~~~~~~~~~~~~~~~~~~~~
_ _

! I
• 114

Table 5.15 - Convergence Sequence for Experiment 4 on GAUSS

• Iteration Reference Referenc e System Parameters
System

mc nib lb fx fi

0 1 12 16 8 1 3

1 12 9 32 14 1 2

2 13 6 16 8 1 1

3 114 5 32 4 2 2

14 15 7 6~4 8 1 3

5 16 5 32 14 1 3

6 17 6 614 8 1 3

7 16 5 32 14 1 3

8 18 14 64 2 1 3

9 19 6 32 4 1 2
• 10 20 5 611 8 1 3

11 21 6 32 14 1 3

12 20 5 614 8 1 3

13 21 6 32 14 1 3

Oscillation
Hypercube 5:6 32:64 14:8 1 3

115
41)
C) a) E
C ~C E ~~~CU C O E
E CU I~ --I N- C en cC ~~ C ~ \ U) C C— o c’.i — ~~

- o
5-
0 0 0. 0’ C en U) C C — U) C en C — C’) cC C

• Cl-. ~~ 0 + + + + + + + + + +
I-
5)
0. s-I C’) N-CO C’ 0’ N- C’ N-’0 N- C’ en C’) N-
~~ CT) U) 0’ IC’ (‘) .— cC -~~~ — — — N- 0 ~~ —• 4) ~~ •

Ui 4) 0’ ~~ C’) ~~ ‘0~~~ C’) ~~ ~~ IC’ ~~ C’C C’) ~~o C) C’) C— 0’ C’) N — N - c C C’) C— 0’ N— CO U) C’) C-—
0 ..~ ‘.0 5-C’ U~~’C IC’ IC’ Ifs ‘-05 -C ’ IC’ Ifs IC’ Ifs ‘.0u~

a) E
• C O E en

Cii I.. •.-I N- C 5-C’ • 0 0 0 .- C C’) C en IC’ C’) C.q-
C) 0. 0\ 0’.0 ’— ‘— C C’) C C C 0 — e n (‘4 0

+3 ~~ 0 + I I I + I + 4 + i

0 0 C en c~ en ~~ en — C’ en — en ~~~
- C’ cC en

CT) ‘CU) C~ C’ LC’ U) ~~
- ‘- C U) — U) ~~ en C’ U)

en .4.) — (‘1’.0 C — ~~ — — — CO —
- C) ~~~

- en C’) — en en en en en en en en c-n c~~en
— .c~ — — — — — I.- — — — — — _- — r -—
-

.~~ C’) 41) E
I-. en ~G E ~~~- 41) C O E 5-C’0. C) (ii S.. -.-. C C IC’ • ~~ 0 ~~ — C en C — ~~ U) 0

~ .C Cl-. 4) . . .U)
Cii C) 0. 0 C C’ — ‘— 0 0 ~~ C en 0 0 — 0’

- E ~~ 0 I I I + I I + + I
0 5-

E 0
41) Cl-, s-I ‘.0’CCO C’) IC”0 ‘.0 C”C C ‘.00 ’ N- C’)’C

1.. 4.) 5- CT) C’ C’ N— N- ‘.0 0’ 0 C C’ C’) 0’ 0’ C’) N- C’0 ci~ a) ~ C’) C’) 0 U) C’) C’) en ‘— C’) C’.) C’) C’) en C C’)
0. >5 0. 4.) C’J C’) (’) — C\j (~4 C\4 C’J C\J C’) C’) C’) C’) C’) C’)

• C/) C) • • -

0 0 0 0 CC C C C C C CC C C
E

E
.~~ 4)
...4 0. s-I en en en en en en en en en en en en en r~ en
0) 0 rh Cl.4

4) — — — .— — — — .— — — .— C’J en — —
I 41) Cl..

E
‘.0 Cii
— S.. .0 ~~ (\J~~~

_ U)

-I E .0 C’J C’J C\J C’) ‘0(’J~~~ C’.J C\J C’) C\4 C’.J C’) C’4 C’)
41) E en en en c-n — en ‘c en en en en en en en en

>5 C) en ~~
- 5-C’ ‘C ~~

-
~~~ ~~

- 
~~

- 
~~ ~~~

- =- ~~
- 

~~~ ~~~C/i E

E
a) IC’ C’i’C — N- C’) U) ~~ C’) U) C’) 0’ — C (\j
+3 en en — e~j en en en en en C~ en en ~~ ~~ en
Cl)
>5

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ • • •~~~~~• .



1 l&

cube thus does not contain the optimum value of the mc parameter for the

same reason as the one given in experiment 3.

5.5.3.3 Analysis of the optimum architecture for GAUSS

ExperimentS 3 and 4 indicate that the optimum system for GAUSS

I is (4, 16, 16 , 3, 3) on the Lm = 1 hyperplane. We now analyze the results

of these experiments in greater detail.

5.5.3.3.1 Non-ortho~ona1 nature of the cost/performance surface
• 

- for GAUSS

- The results of experiments 3 and 4 indicate that the cost/per-

formance surface departs much further from orthogonality with reference

• to its system parameters for GAUSS than for EIGEN. This can be seen from

• 
the different optima reached for the 2 Liii hyperplanes. Thus:

a) With the increase in the instruction supply bandwidth due to

the addition of loop-mode (Lm = 0 to Lm = 1), it becomes cost-effective to
- have a high bandwidth fixed point unit (fx = 1 to fx = 3). Further,

with the demands made on memory for instruction fetching being reduced ,

the memory bandwidth can be reduced (mb = 32 to nib 16).

b) The interaction between Lm and ib is also clearly brought

out and will be discussed further.

c) The sensitivity sequence for experiment 3 revealed that , while

at a lower memory bandwidth (mc = 5), it is more cost-effective to have a

low bandwidth fixed point unit (fx = 1) than a high bandwidth unit (fx = 3),

the reverse is true when the memory bandwidth is increased (mc = 4). This

can be seen from the cost/performance figures listed in Table 5.17.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


117

Table 5.17 - Interaction Between mc and fx on the Cost/Performance

Surface for GAUSS 0-n the Lm = 1 Hyperp lane

System System Parameters Cost/Performance

mc mb lb fx fl

214 5 16 16 1 3 502.37

26 14 16 16 1 3 5011 .10

33 5 16 16 3 3 1490.88

14 1 14 16 16 3 3 14814.05

_ _ _ L~~

118

5.5.3.3.2 Instruction unit issues

Loop-mode has a much greater impact on system performance for GAUSS

than for EIGEN. Thus, the optimum system on the Lm = 0 hyperplane is 207.

• worse in performance and l8.6~ worse in cost/performance than the optimum

system on the Lm 1 hyperplane. This is also evident in the different

optima reached on the two hyperplanes.

The instruction buffer tradeoff discussed earlier is brought out

• with great clarity for GAUSS. With Lm 0, ib = 4 is found to be the best

tradeoff between prefetching and superfluity. The smaller degree of pre-

fetch for GAUSS than for EIGEN, 4 against 8, is clearly related to the

higher percentage of branches in the former (15.35~ against 8.207.). This

greatly increases the superfluity effect, forcing a low degree of prefetch .

With Lm = 1, ib = 16 is the best tradeoff between prefetching and loop-mode

4 on the one hand and superfluity on the other. This is despite the fact

that 95.27. of all the looping branches in GAUSS have their target distances

less than 128 bytes (corresponding to ib = 32), against 33.37~ for 64 bytes

(ib 16). This again illustrates the fact that loop-mode is cost-effective

only for small loops. On the other hand ib = S is not sufficient , since

only 5.17. of the looping branches have their target distances less than

32 bytes.

5.5.3.3.3 Execution unit issues

The relative importance of the two execution units is reversed

in GAUSS , with respect to EIGEN, with the floating point unit gaining in

prominence. This is seen from the convergence sequence of Table 5.15,

where fx and fL stay steadily at 1 and 3 respectively. Further , the

sensitivity report shows that decreasing f2 from 3 to 2 causes performance

- - • • - - •~~ ~~~~~~~ ~~
~~~~~•



119

and cost/performance to degrade by 11.57. and 10.77., against 2.17. and

0.17. for a corresponding change in fx.

Exactly the same observation can be made as for EI~~ N - this

relative importance is linked to the proportion of the two types of

instructions in the program. For GAUSS, the proportion of fixed to

• floating point instructions is 0.83:1 against 1.3:1 for EIGEN.

5.5.3.3.4 Memory issues

A curious phenomenon occurs with GAUSS - viz, there is absolutely

no performance increase to be had by decreasing mc from 4 to 3. Even

increasing mb from 16 to 32, produces a marginal increase in performance

of 0.67.. This suggests strongly that the bottleneck has shifted to system

areas other than the memory for this program on the optimum system.
• 5.5.4 Experiments on ERROR

For experiments 5 and 6 , the ERROR program was run on various

system configurations .

5.5.4.1 Experiment 5: Optimization on the Lm = 1 hyperplane

This experiment was conducted using systems on the Lm = 1 hyper-

p lane with the procedure started at the normal system (12, 16 , 8, 1, 3).

Table 5.18 lists the convergence sequence for the experiment , and Tab le

5.19 the sensitivity report around the optimum system (7, 64, 16, 1, 3).

The oscillation hypercube reached a value of inc (14:15) which is very

far away from the actual optimum value of 7. Examination of the cost/

performance surface reveals that it is very flat over a wide range of

values for the two memory parameters - inc and nib. This is clearly indicated

in Table 5.20, which lists the cos t/performance values for a number of



• - 120

Tab le 5.18 - Convergence Sequence for Experiment 5 on ERROR

• - Iteration Reference Reference System Parameters
S y s t e m

mc mb ib fx fi

0 0 12 16 8 1 3

1 12 13 32 16 1 3

2 18 114 614 32 1 3

3 29 16 128 64 1 3

14 30 17 256 32 1 3

5 31 16 128 16 1 3

11 3

Oscillation
Hypercube 111 :15 32:64 16:32 1 3

-

~

—--

~ 

-•---
-- —--~~~~ ~~~~~~~~~~~~~ -• • -~~~~~ •~~~~~~-~~ ~~~~~~~-~~~• • •~~~~~~~~~~ •- _ _ _ _ _



121

E c5 ~, 
.~ N-~ C — U) C en — C N- C 5-C’ U) C

S.. .c 4- 4.) • .  . . . .  . . .  . .  ‘-Co C) 0. C 0 C’) C (‘4 en 0 ‘C C — C• 4-. ~~ 0 + + + + + + + +
I-
a)

• 0.. -I C C\J C — ( ‘J O’ C (\i C c\J en CV~~C’)
~~ Cii ‘C ~~ 5-C’ C ~~ IC’ ~~ C U)

— C C’) IC’ C ~~ ‘.0 C C’.J o en ~~
- C

• 0 C) U) U) U) U) U) U) U) U) 0’ U) U) U) U)
o c — — — — ‘- — — — — — — —

• n o E n
C O E
cii S.. ~ ~

— C en n.c 0 ~~ IC’ C C C ~~ ~~ C.0 4-i -i.) . . . . . . . . . .
• 0 C) C. ~~ C c-n C’) o ~~ C o — C — e’.~ C.4.) 

~~~. 0 + I I + I + + I
1~3

0 — C’) N— C’ C’- C— en C N- — N- U) C’) N—
o — . cii c-n ~~ i— en u’~ U) en i.n en C u~ en

en , ,
- .4.) en U) ~~ ~C’ U) en N- U) 0’ U) C IC’ U)

-U — C) C’) — — — n.j •— — — — C’) — —,_ I-. — — — — .— — — — — — —‘C0)

:~~: ~~~~~~~~~~~0.. .) ‘C ‘.0 ~~ ‘.0 ‘C ‘C ‘.0 ‘C ‘.0 ‘C ‘.0 C’) ‘0
C/I C) • . ‘

- C C C C C C C C C CO CC
.4
—I EU

.4.)
0. i-i en en en en en en en c-n en en n.j en

Qi 0 Cl) C...
Cl) 5-.

a)
I .4.))C — — — — .— — — — — — C’) — —
0’— a

cii
S.. .0 ‘C ‘.0 ‘C ‘0 ‘C ‘C U) ‘.0 C’) ‘C ‘C ‘C ‘.0
Cii —4 .— — — — — .— — en — — — —0.

.0
E .0 ~~

-
~~~ ~~~ C”.j ~~

• U) ~~~
- ~- ~ ~

. 
~~~
.

~~
-

~~
.

a) E ‘C ‘.0 ‘0 en ‘.c C’) ‘.0 ‘C ‘.0 ‘.0 ‘.0 ‘C ‘C.4.)
Cl)
>.. C) ‘C N- U) N- N- N- N- N- N- N- N— N- N—

C’) E

E
a) IC’ ~~ en N— ~~ U) C’ ~~ C ~~ ~

- C’) ~~ ‘.4.) ~~ ~~ I4~ ~~ ~~ LC\ ~~U)

122

Table 5.20 - Cost/Performance Figures for Some Systems on ERROR

Optimum System : (7,614 ,16 ,1 ,3)

• System System Parameters Performance Cost/Performance

mc mb lb fx fi Actual ~change Actual %chari ge
f r o m f r o m

optimum optimum

57 6 32 16 1 3 0.6585 +0.4 183.21 +1.6

59 8 32 16 1 3 0.5885 —10.3 190.17 +5.4

58 10 32 16 1 3 0.5169 —2 1.2 205.13 +13 .7

60 12 32 16 1 3 0.111479 —3 1.7 227.14 +25.9

145 6 64 16 1 3 0.6785 +3.4 181.60 ~-O.7

143 8 64 16 1 3 0.6277 _14.3 182 . 110 + 1 . 1

141 10 611 16 1 3 0.5762 — 12.2 188 .148 +4.5

55 1 2 6~4 16 1 3 0.5193 —20.9 200.89 ÷11. 14
•

61 6 128 16 1 3 0.6829 ÷ 14. 1 187 .98 + 4 . 2

140 8 128 16 1 3 0.6401 —2.4 186.93 +3.6

39 10 128 16 1 3 0.6029 — 8 .1 188.72 + 14~~5

38 12 128 16 1 3 0.5555 -15.3 197.09 +9.2

123

systems of varying mc and nib values. This flatness of the cost/per-

formance surface causes both the rapid convergence and the error in the

optimum prediction.

5.5.4.2 Experiment 6: Optimization on the im = 0 hyperplane

Since, as Table 5.3 indicates , ERROR has no looping branches with

a target distance of less than 128 bytes, loop-mode makes no contribution

to system performance in the ranges of ib considered. Thus experiment 6,

which runs ERROR on systems on the 2m = 0 hyperplane, is essentially

repeating experiment 5 with a different cost function,i.e., with the cost

of loop-mode not included in the CPU cost. However, the procedure was

started at (6, 16 , 8, 1, 3) and gave rise to the convergence sequence

listed in Table 5.21. The oscillation hypercube is still far away from

the optimum along the mc dimension, for exactly the same reason as in

experiment 5. Table 5.22 lists the sensitivity report for this experiment.

5.5.4.3 Analysis of the optimum architecture for ERROR

The optimum architecture for ERROR is thus seen to be (7, 64, 16,

1, 3) on the 2n = 0 hyperplane. While there is quite a bit of interaction

between the nib and mc parameters on the cost/performance surface , the

surface is fairly orthogonal in the other parameters.

5.5.4.3.1 Instruction unit issues

As seen earlier , loop-mode contributes nothing to performance.

Furthermore, the low percentage of branches (— 27.) causes a high degree of

prefetch (ib = 16) to be quite cost-effective , with superfluity becoming

dominant only for higher values of ib (above 32).

- •“•~~~~~~~~~-~~~~~~~~ • •

~~~~~~~~~~~~~~~~~ • • • - 



124

Table 5.21 - Convergence Sequence for Experiment 6 on ERROR

Iteration Reference Reference System Parameters
S y s t e m

mc mb i b f x  f l

O 2 6 16 8 1 3

1 12 8 32 16 1 2

2 13 7 16 8 1 3

3 1~4 6 32 16 1 3
4 15 8 16 8 1 3

5 16 7 32 16 1 3

6 17 9 614 8 1 3

7 18 10 32 16 1 3

8 19 11 64 8 1 3

9 20 12 128 16 1 3

10 21 13 64 32 1 3

1 1 22 12 128 64 1 3

• 12 23 11 6)4 32 1 3

13 18 10 32 16 1 3

14 19 1 1 64 8 1 3

15 24 10 128 16 1 3

16 19 11 614 8 1 3

• 17 2~4 10 128 16 1 3

Oscillation
Hypercube 10:11 64:128 8:16 1 3



125

a)
C) C) E
C ~~~~~~ ‘.0
Cii C O E
a ~ ~ . U) C C N- C ~~ — C N— C LC’ U) C
S.. .0~~~~

4.) . . .  . . .  . . .  . .
o C) 0. 0 C — C’) C C’) en C’C C — — C• C... ~k 0 + + + + + + + +
S..
a)
0.. i-1 C U)’.0 tn. U) en C U) — U) U) N-U)
—.. Cii ~- C U) U) C en IC’ C C’ C’.0 U) C
.4.) ~~ . .  . . ..  .

• U) .i.) N— ’C N- Cs.0 C ‘ ‘ 0  N- ‘C U)  (‘4’C
o C) N- N- N- U) N- U) U) N-U) N- N- N- N-
0 C — — — — !- — ~~~ — — — — ~~~

- F.

C) E

~ C’) 0 ~~ C’) C IC’ 5-C’ C C C 5-C’ IC’ C.C 4-. 4) . . . . . . . . . .
O C, C). z C en (“.4 0 z C C — C — C’) C• .~ ~~ 0 + I I + I + + I

U)C.) o
0 —4 N- C’) ~~ -~ C’) U) LC’ ( ‘j ’.0 c’-~ en N- C’)

o —~ Cii en IC’ ‘0 0’ LC”C 0’ 5-C’ ‘.0 5-C’ C’) ‘.0 IC’
en . . . . . . • . . .

‘.0 - C 5-C’ — C’) IC’ C ~~ LC”.0 IC’ N- C’) LC’
U — C-) <‘)r~ .— r- (%4 — — — — — — —- -~~~ — — l — — F. — F — !~~ — — —
5-4 

~- a) E
‘C
- C) o o a  N—

C.) N- C) Cii 5-..4 ~~ C C~ U) C C ~~ C ~~ C C . 0
C .0C.-. .) . . . . . . . . . . . en
(ii C) ~. en C ~~ ~~ C C’) en C LC’ C 0 ‘ .00

U-I E ~~ 0 + I I + I I I
S..

U E 0
Si C... — 5-C’ — C— LC’ — C’) en — U) — — en —4.) S.. lii U ) ’C  C— ~~- ‘-0 0’ en’..o C ‘.o ’.c U) ‘.0

a) U) a) n N- IC’ C’) n.j tn ’.~o c-n ~~ C’) ir~ LC’ en LC’
>. 0.. -4.) ‘.0 ‘.0 ‘.0 ’.O ‘.0 ‘.0 ’C ’.0 ‘.0 ’.0 (‘4 ’.C

C/I C) . . .  . . .  . . .
C... C CCC CCC CCC C C  C CU
,.1

U
-4 4.)

0. .—~ en en en en en c-n c-n en en en en n.j en
Cl C U) 4-.
Cl) 5-.

a)
I J )C — — — — — — .— — — — n.j — —
r..I a) 4-~
C—I
.

u~ ~. .0 ‘.0 ’.0 -.0 ‘.0’.0 ’C  U)’-.O C’) ‘0.0 ‘.0 ’CCo .
~~~ — — — — .— ‘— — en — — — —

-~ 0.

E .0 ~~~ C’) ~~
- U) ~~a) a ‘c ’.o’.o en’C C’) ‘0’.o ’.o ‘.0’C ‘C’C.4.) —Cl)

>. 0 ‘-O N- U) N- N- N— N- N. N- N- N- N- N-
C’) E

E
C) C C’ U) ‘.00.. C’) en c’ ~~ C\ cC’ ‘C 0’en n.j C’) — n.j en en n.j en n.j c-n en C~U)
C.-,
C/i

126

• 5.5.4.3.2 Execution unit issues

The proportion of fixed to floating point instructions , 0.045:1,

is abnormally low in ERROR. Thus it comes as no surprise that Lx and U

stay steadily at 1 and 3 respectively in the convergence sequence. Even

more dramatic confirmation of this is obtained from the sensitivity report

in Table 5.22. Increasing fx from 1 to 2 yields absolutely no performance

• increase, while reducing Li. from 3 to 2, causes performance and cost/per-

formance to degrade by phenomenal figures of 63.77. and 168.67, respectively.

5.5.4.3.3 Memory issues

For ERROR, both mc and rob seem to contribute roughly equally to

performance. This is seen from the sensitivity report in which movements

of 1 grid metric along either the mc or rob dimensions cause performance

changes of the same order of magnitude - 2 to 57.. Since , however , their

coc t functions are different , mc and rob can be traded off against each

other. Thus Table 5.19 shows that the (mc , rob) combination of (8, 64) is

more cost-effective than (6, 32) , as is (12, 64) over (10, 32). This wide

range of choices for the pair of n.emory parameters to yield systems that

have the same cost-effectiveness is what caused the optimization procedure

to fa4i , as discussed earlier.

5.6 Efficiency of the Optimization Procedure

In this section, we estimate the efficiency of the procedure ,

using the definitions of Sec. 4.4.9. Table 5.23 illustrates the calcu-

lation of the T~ and for the procedure in experiment la. Table 5.24

lists the 1
~

and values for the experiments conducted . As expected ,

the efficiency is low in those experiments e.g. 2 and 5 where the oscillation

hypercube was far from the optimum system since more sensitivity analysis

is needed to identify the optimum. On the average , for the experiments

127

Table 5.23 - Efficiency Estimates for Experiment la on EI GEN

Num ber of low—level model calls

by the ideal procedure

3 x 3 x 3 x 2 x 2 10 8

Num ber of low—level model calls

by the optimization procedure 302

Num ber of low—level model calls

by the gr id e v a l u a t ion p roce dure
4

= 1) 4 x 6 x 3 x 3 x 3~~~ 226 8

Efficiency of the optimization procedure:

108
TI — 0.357

302

E f f i c ie n c y of the gr id eva lua ti on p roce d ure :

108
= 0.048

2268

• 128

Table 5 . 2 4 - Efficiency Estimates for the Optimization

-
- procedure

Ex periment Efficiency of Efficiency of
• optimization grid evaluat ion

p roce dure p roce dure

•
• la 0.357 0.0148

lb 0.352 0.029

2 0.2)40 0.032

3 0.374 0.031

4 0.271 0.038

5 0.200 0.031

6 0.346 0.037

129

conducted , the ideal procedure is only 3.3 times more efficient than the

optimization procedure which is 8.7 times more efficient than the grid

evaluation procedure. Thus the optimization procedure is seen to be

quite efficient in this case-study.

5.7 Some Architectural Conclusions

The analysis of the experiments conducted can be used to draw

some broad conclusions with respect to the architecture.

1) The performance of the system is heavily dependent on the

proportion of branches in the programs. Thus the performance of the

optimum systems for the three traces is distinctly correlated with the

percentage of branches in each, as shown in Table 5.25.

2) The best choice of instruction buffer size involves a tradeoff

between increased instruction supply bandwidth due to instruction prefetch

on the one hand , and superfluity and loop-mode on the other. The greater

the proportion of branches, the smaller the prefetch needed. Loop-mode is

cost-effective only with a high percentage of small program loops, where

the branch decision and target fetching time form a small percentage of

the loop execution time. At large buffer sizes , superfluity of prefetched

instructions dominates.

3) ihe relative importance of the floating and fixed point execution

units is in roughly the same propor tion as the percentages of the two types

of instructions in the programs.

4) Memory cycle time has a greater effect on performance than the

number of memory banks.

- ~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ --~~~~~~~— - ~~~~~~~~~~~~~~~~

130

• C)
C) C) E
C ~~~~~~~CU C O E ~~ C’) C’)
E CU L .,.4 • C C • C N- • C C’)
5-. ~~ 4 - . .~~ c-n - - C’) - . U) -

o C) 0. c-n C 0 ‘C C — N- C -.0
~~ 0 + + + I + +

5-.
C)
0. -~ C n.j en en cj c — U) n.j en
~~- CT) — N- U) 0’ C ‘.0 IC’ ~~ ‘04.) ~~
Cl) ~4.) 0’ — — ~~ IC’ — C —• 0 C) U) 0’ 0’ U) U) N- C’) U) C’

• C-) C c-fl n.j C’.) N- ~~ c-n — —
C) E

C) C O E 0’ N- N-
C) • 0 C • C C • C —
C .0 C.~i .i.) 0’ - • cC’ . .

Co ci 0. c-n C 5-C’ u. C ~~ IC’ C ~~E ~~ 0 I + I I I +
C 5--C) 0

4-~ —‘ N- C’) ‘C C’) U) en ‘.0 — C’)
5-. Cii ‘C N- U) N- ‘C cC’ C ‘C en
C) ~ IC’ C’) ~~ C’) ~~ N- — ~~0. 4.) C’) ~~ — C’) C’) en ‘C ‘CU) C)

• C C C 0 C C C 0 C C
.
~• 5-I
cC

‘4 — en en c-n c-n c-n c-n c-n c-n c-n0
~• S..

o C)• .4.) < — en en — c-n c-n — — en
Cl) 4—.

• 5-4(5
0.

• C 5-.. .0 U) U) ‘C U) ‘.0 ‘C U) ‘.0 -.0
o Cii ~~ 1~~

— — — —0.
I

C .0 ‘.0 C’) C’) ‘C -.0 C’) ‘.0 ~~ n.j
crc Si E — en en — — c-n — ‘0 en

131

5.7. 1 A Final Design for the System

Let us assume that the program environment for which the system

is designed is characterized by the three program traces used in the

experiments. The final system design must then be a compromise between the

three optimum systems arrived at for the three programs, with each optimum

being weighted by the occurrence of the corresponding program in the environ-

ment . To i l lustrate this , we develop a compromise design system and

evaluate its performance and cost/performance in the environment.

The flatness of the cost/performance surface for ERROR along the

memory parameter dimensions , suggests that the memory design can be influ-

enced largely by EIGEN and GAUSS. The compromise chosen between (mc = 6 ,

rob 32) for EIGEN and (4, 16) for GAUSS was (5, 32). The Li. parameter was

assigned the value 3, since all three programs require this. The dependence

of EI~~N and GAUSS on Lx, cause that to be assigned the value 3. In view

of the ib tradeoff discussed in detailed in earlier sections , the compro-

• mise adopted was to fix ib at 16 , with the degree of prefetch reduced to 8.

Notice that this architecture is not in the space of systems considered by

the optimization, where the degree of prefetch was always equal to ib. The

dependence of EI~~N and GAUSS on Lm, argue for Lni = 1 in the design . Thus

the final “design” system was (5 , 32 , 16 , 3, 3) on the Lm = 1 hyperplane.

• The performance and cost/performance of the design system on the

three programs is shown in Table 5.25, with the normal system and the

respective optima also shown for comparison. The design system matches the

optimum system for EIGEN in cost/performance and outperforms it, mainly

due to the reduction in mc. Its cost/performance value for GAUSS is even

• bet ter than that of the optimum system for GAUSS. This is possible because the

132

design system is not in the system space examined by the optimization

procedure . The degradation in cost/performance on ERROR is due to the

reduction in the degree of prefetch and the non-usage of the expensive

f ixed point unit .

133

CHAPTER 6

CONCLUS ION

6.1 Sun~uary of the Research

In this research, we have introduced the concept of a hierarchy of

system performance models and discussed the characteristics and the con-

struction of such a hierarchy . It was argued that such a hierarchy is a

very usefu l tool for the cost-effective design of computer systems. A design

procedure that uses this hierarchy was developed. The practicality and the

usefulness of this procedure were demonstrated by applying it to the opti-

mization of a complex computer system - the CPU-memory subsystem of the IBM

• System 360/91. In almost all the experiments, the optimization procedure

converged, if not to the exact optimum system, at least to within a very near

region of the optimum. The efficiency of the procedure is considerably more

• than that of the worst-case approach to system design, and is not sub-

stantially worse than that of the ideal procedure. Using the procedure yielded

a great deal of insight into the behavior of the system.

6.2 Accomplishments of the Research

We summarize the main contribution of the research in this section .

1) Previous studies in the performance evaluation of computer systems

have tended towards one of two extremes. At the one end are models in which

reality has been sacrified for the sake of simplicity and mathematical tract-

ability . While such studies do provide some insight into the system being

modelled, their range and usefulness are severely limited because they are so

far removed from realistic computer systems. At the other end are models which,

because of their adherence to detai l in the modelling of a specific system,

have very l i t t l e generality of use.

134

Our approach combines the t ractabi lity of the f i rs t kind with the

accuracy of the other. It increases the range of applicability of the

state-of- the-art performance modelling tools , by comb ining these synergistically

into a powerfu l tool - the hierarchy of performance modelling tools. The main

•
-

ingredients of this approach are the trilogy of calibration , validation and

prediction , the proper use of which ensures accuracy as well as t ractabil i ty.

This is to be contrasted with most previous approaches to modelling, which

have not laid enough emphasis on the iterative process of validation and

recalibration before using the model for prediction.

2) The second major contribution is the embedding of a hierarchy of

performance modelling tools into a system design (or optimization) procedure.

The conflicting demand s of standard iterative optimization procedures, viz,

accuracy and ease of computation , are well matched by the attributes of the

hierarchy. The practical prob lems with developing such an optimization

procedure have been confronted and a number of issues brought to light .

The success of the implemented procedure on the optimization of the

case-study system is encouraging, and establishes the hierarchy as a viable

design tool.

3) Some insight has been gained into the behaviour of highly pipelined

single instruction stream CPU memory sys tems. Since the case - s tudy system

is an example of a highly comp lex computer system , th e study leads us to

believe that our understanding of complex systems can be improved by studies

of this kind .

6 .3 Suggestion s for Fur ther Research

We believe that our study opens up a vast area for further

exploration in the performance evaluation f ie ld . We discuss some extensions

—~—~~~~•- - - -~~~_ _
_ _ _

135

in the following subsections . First we discuss some specific improvements

that can be made to the optimization procedure developed in Chapter 4.

• Then , we discuss more general ideas dealing with the extension and the

application of the hierarchy concept.

6.3.1 Shortcomings of the Opt imization Procedure and Suggested Remedies

We believe that the optimization procedure needs to be tuned

further , to weed out some of the errors that come to light during the

experiments. We now discuss some of the shortcomings of the procedure ,

and suggest some remedies.

• 6.3.1.1 Regression error

The experiments clearly show that in regions where the cost/

• performance surface has a small gradient along one dimension, the regression

error must be less than this gradient value , for the procedure to converge

• re l iably to the true optimum along that d imension. One possible way to

reduce the regression error , i.e., obtaining a better fit to the per-

formance surface , is to use a higher order regression model. Thus a

quadratic model would express the response Y in terms of the factors

• (X1,. . ~
Xm)~

using the functional form:

Y = + ~ixi +
.~~~

B~1 + E ~~~~~ ~~~~~~i~ l i=l i=l j~ i+l

Stat is t ical significance tests can be used to include only those factors and

factor pairs that sign ificantly af fec t the response. The cost of f i t t ing

and using such a model would still be an insignificant fraction of the low-

level model cost.

‘1~ ~~~~~~~~~

-
-

~~~~~~~~~~~

-

~~

- 

~~

-

136

We do not, however, recommend increasing the order of the analytical

model indefinitely. Thus a 3rd order model could conceivably be worse than a

2nd order model, because it may introduce an oscillatory model surface, which

creates a number of fictitious local optima. However, most performance curves

do have a second order flavor , which argues for using a 2nd order model.

6.3.1.2 Choosing recalibration sets

In the procedure as implemented, when the current reference system

has an extreme value along one d imension, e. g . ,  fi. = 1, only one nearest

neighbor along that d imension , i.e. one with Li. = 2 , is needed to estimate

the regression model coefficient along that dimension. Use of only one

other point would disregard any non-liriearities that  occur on the cost!

performance surface along that dimension. For examp le , Table 5.12 , the

sensitivity report for experiment 2 , shows that near the op t imum system both

a 1. and Li. = 3 are more cost-effective than fi. = 2. Thus , if the reference

system has fi. = 1, it may never look beyond fi.=2, though fL=3 may well be the

optimum value. This could be remedied by using a higher order model , to better

model the non-linearity of the surface . Thus a quadratic model would need

at Leas t three points along each dimension to compute the best fit , and

Li. 1,2,3 would have to be considered.

6.3.1.3 Inability to maintain local perspective

when the reference system has moved into a new region, the new

model should not be affected very much by old regions, i.e., local perspective

should be maintained. In the procedure as implemented , this is not always

possible. For example, in experiment 3 on GAUSS (see Table 5.14), by

iteration 6 the reference system has moved to quite a different region from

the initial region. However, to obtain ~4 the coefficient along the fx

~ 1 ~~~~~• •~~~~~~-~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~
• •

j

137

dimension - a calibration system with fx = 2 is required , and the only one

available in the calibration set is (12, 16, 8, 2, 3). However, including

this system in the recalibration set, causes a member of other systems in

the initial set to be included as well , since they are at the same distance

from the new reference system. This distorts the local perspective

enormously, especially along the most sensitive dimension - in this case , ib.

One possible remedy for this effect , is to generate extra calibration

systems when in a new region. Typically , this can be done when it is observed

that too many systems at too great a distance are being inc luded in the re-

calibration set. This method can then be viewed as mingling the sensitivity

and the optimization procedures .

6.3.1.4 Rigid movement rule

Requiring a change in every parameter of the reference system per

• iteration, i~ too rigid a movement rule . While , in the initial stages , it

forces th~ ~~ocedure to roughly explore large regions of the system parameter

space , it tec~~s to cause unnecessary thrashing in the later stages , thus
•

prolonging the convergence. For examp le , one of the iterations in experi-

ment la on EIGEN , forced a movement along the rob d imension from 64 to 128 ,

because the optimum predicted by the local optimization procedure was 64.33. • -

It is clear that this difference from 64 could have been well within the

regression error b ounds of the procedure.

One possib le remedy for this problem is to set a lower bound on

the change for each parameter of the reference system. If the change

predicted by the optimization procedure is less than the bound , the reference

system would not be changed along that d imension. These bounds could be

adaptive ly increased as the procedure converges.

~~4 ~~~~~~~ • ~~~• • • •~~~~~~ •~~~~~~~~~~~~~~~ . ~~~
-

138

6.3.1.5 Rigid stopping rule

Requiring the procedure to oscillate between two reference systems

appears to be too rigid a stopping rule. In conjunction with the rigid

movement rule , this caused quite a bit of thrashing in the early experiments

on EIc~~N.

A possible remedy is to monitor the change in cost/performance

•

•

~
• caused by the reference system movement . When this change goes below a

limit , the procedure can be stopped.

6.3.1.6 Adaptive grid metrics

We believe that the adaptive approach to varying the mc grid metric

is a reasonable one . It is in keep ing with the philosophy of maintaining a

global perspective in the initial stages and gradually narrowing the

perspective as the procedure converges to the best region. However , the

problem that arose in experiment Ic on EIGEN , may have to do with the actual

implementation of the adaptive approach , as described in Sec. 4.5.2.

A technique similar to the one suggested in the last subsection

• may be used to control grid metric reduction. This would use percentage

changes in cost/performance between successive reference systems to estimate

the rate of convergence of the procedure . The grid metric change is computed

as a function of this rate ; in fact , it could actually be increased for small

rates of convergence.

6 .3 .2 Further Resear ch into the Hierarchy Concept and General Issues

The concept of a hierarchy of models for performance evaluation

can be extended in a number of ways :

•

~~~~~ 

-

~ 

- •

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

•- •- -

~~~~~~~~~

-

139

1) Hierarchies of more than two levels should be examined. Thus,

in the two-level hierarchy considered in this study, an intermediate level

that is less expensive than the low level mode l and has a larger range of

validity than the high leve l model , could increase the cost-effectiveness

of the procedure even further. In fact , in our research , the phase which

consumed the most time and resources ~as the simulation ,runs of the low-

leve l model. Introduc ing a level of intermediate complexity, e.g., a queueing

mode l , would reduce the demands made on the low-level model even further.

Consequently more , and larger , program traces could be experimented upon,

to build a body of theory for architectures of this type. In general , the

introduction of additional levels should be considered , if large regions

• of either complexity or cost are not covered by any model currently in the

hierarchy.

• 2) In connection with (1) above , the hierarchy concept could be used

on subsystems derived by a structural decomposition of low-leve l models.

For examp le, building separate hierarchies for the memory and CPU would

enable combinations of models of different levels of complexity for the

different subsystems to be used as intermediate levels. Thus the inter-

mediate level model could either be a CPU simulation model with an

analytical memory model embedded in it, or vice versa, depending on the

region being explored.

3) While quite a few computer system models have been proposed and

analyzed, very little work has been done in modelling work loads to drive

these system models. The proposal in Sec. 3.4.3.2, to generate synthetic

control streams, based on statistical summaries of program environments

LL•~



140

• is a step in this direction , and should be further explored. parameterizing

workloads will enable studies of the system workload space analogous to this

study of the system architecture space. Thus the optimum workload for a

given system architecture and the sensitivity of the optimum system design

to the workload parameters can be examined.

• 4) The techniques developed in this research can be applied to model

and design computers at a higher level. Thus systems can be studied at the

component leve l of processors , memories , I/O uni ts , etc , besides the CPU

function unit leve l studied in this thesis. It is our belie f that the

basic techniques could be app l ied , regardless of the leve l at which the system

is studied.

5) Cost models other than the one used in this research should be

investigated for their impact on system design. For example, using cache

memories makes possible very low effective memory cycle times at low to

moderate costs. The cost model used in this research did not allow for

introducing a cache into the system. Parameterizing cost models , i.e . ,

making the cost coefficients for the system parameters variable , wi l l  erable

studies of the sensit ivity of the optimum system design to change s in the

cost coeff icients .  In an era of rap id ly changing technology , such studies

are of great importance to the system designer.

I



-

~~~~~~

141

APPENDDC A

• Theorem A.l

If (A - C L < IA -B I then

a) A > B if f C > B a nd

b) A < B if f C < B

Proof :

a) To prove that A > B if f C > B:

a.l) L e t A > B

Then (A - C (< A-B.

a . l . l) Let A > C.

Then A-C < A-B .

Therefore -c < -B and thus C ‘ B.

a . l . 2) Let A < C.

• Then C > A > B and thus C > B.

Therefore if A > B then C > B.

• a. 2) Let C > B .

Assume that A < B.

Then I A - C l < B-A.

a .2 . l) Let A > C

• Then A > C > B and thus A > B ,which is a contradiction.

a .2 .2) Let A < C

Then C-A < B-A

• Thus C < B which is a contradiction.

Therefore , by contradiction if C > B then A > B.

— - -~~~~~~~~~~~~~~• - ~ ~~ —~~~~~—~~~~~~~~~ -~~~

142

Therefore A > B if f C > B.

b) To prove that A < B iff C < B

b.l) Let A < B

-
•

Then (A-C l < B-A.

b. 1.l) Let A > C.

Then C < A < B and thus C < B,

• b . l . 2) Let A < C.

4 Then C-A < B-A and

thus C < B.

Therefore if A < B then C < B.

b.2) Let C < B .

Assume that A > B

Then IA-c l < A-B.

• b.2.l) Let A > C.

• Then A-C < A-B.

Therefore -C < -B and thus C > B, which is a contradiction.

b .2 .2) Let A < C .

Then C > A > B and thus C > ~,which is a contradiction.

Therefore , by contradiction, if C < B then A < B.

Therefore A < B i f f C < B.

Q.E .D

_ _ _ ~~~~~- - ~~-

143

APPENDIX B

B.l Introduction

In this append ix , we present a listing of the simulator of the

control stream model. The simulator was written in the SIMULA language ,

• an excellent introduction to which is given in [B 1R73J . The system used

was the SIMULA-lO system [B1R74}, developed at the Swedish National Defense

Research Institute in Stockholm. The system was run on the DEC-10 at the

Coordinated Science Laboratory of the University of Illinois at Urbana-

Champaign. Execution t imes of simulator runs ranged from 12 to 40 minutes.

In the listing that follows , coimnent statements begin with a

and end with the f i r s t ‘ ; ‘ thereafter.

144

U0
Ca-
3
=U.

= -
C UI
UI UI
UI C
-~ U.

U. F-. -. 3
-.-— F-. —V U

F- i-. F’3 3 U.
—4 -

3 4.. U.
F-. C UI
~~~l— .

~~.• CC U.
UI IC  O F- U .  3

• U -F-- 3 V’) U. C
— L I/F C _4
U. C U  L 4’) U. U.

14 (3 UI 0 -
,. I—. — X LI UI

9 UU. U.
C — CU (3 F- U. =

• I .. U. -.. U J U .  U.
I F- 9 LU 9

UI 9 .. 9 9 ( 3  3 - 1  —-~ C’) F-. — F-. UI - C C U -~C C C 9 F-U F - ..J U.
U. UI -4~~~I 3 IC ~~/ F 4 .

9 II 3F-. C F-. U.
F- -. C 0 F-. ~1 U. 3 U.

-I - .. If = •.UI .fV C’) U. U
3 F-. -. U U. L U .  U C’. U.
F-. = U. 3 C C C I-. C’) 9
C . V V U C  9 .  U. C /F U U  UI

-- ~ = = -~ ~~ — F- U. - - 9
- C — C U. C O  I C 9 U. U

1/) 1 . — If UI — ~. C F. ..~ ~F’ 3 — — 34
U UI = C — -. ‘ F. 0 U. C’) — _4 LI’ UI C
— F-. U .. 4 / F U . U .  C O  7 U I . Z . . I a U I  3
F-. -~ F-. I f  C (3 U. 0 2 U U. .• (1
I-’) 9 C C .. UI - . C U. F.. F-. C’) 9 -o U. C
— 4/) U. 4-. 4/) U. UI 1 3.-  C ‘U - -9 9

U. C U I U . 4 3  . 3 C  C’),I’ U .f - .  -.
C UI — . 9 C F-. F—. I 0 — C — -3 5 9 U —

= C’ C CZ O  o. UUI Z U U I C U .  9
4/) F- ‘4) •• C ~~~~~ U. Z r-I U CU . _ I  I

9 UI . F-. UI C 9 U. — C - -C ’)  F- -~ 3
- - C U. - — U I O C  —I 14/) I/)5...F F—. U. -

•1 9 9 U. — U U. U 3 UI C .O__ — .) 9 1/) 3 - •. -.
U. U. - —~ 9 U C U I C  -— I  C O  9 1 4 / C C Z~~~~ .~ C
U. U. UI 9 3 U. U C I C 49 .- 9 UI 3 9 9 9 C . 4’) U
4’) U. C I-. UI I .14 F-. V 4’) (3 .1  I U. .“~~ 3 UI 4’)
0 O OU O  4’) ~~~ _ .9 . . Z  • C’ I 9 4 )  ~~~~ U. C C  ~ . =

.0 F—. U. 9 4’) UI F—• 9 49 — ••— C F- C C U. -. 3 II’ U. C Z) • 4 U
• = U F - —F U. ‘4) 9 3  I C  F - U .  34/) - 4’)~~’) 1O 3 C ’ U . C  .-. C ,—

O U. = UI — U U C 09  -- -. 0-I C =0. - -u  1— I =4(1 = 0 F -~~~~~Z U -. I U I C - S U I I 4  U . —  ~~~~~U. ~~~~~~~~~ I ’U .~~~~~~~~~ C 0 2- -
— — ~—. U — C F—. ‘-4 C U. = -. C U.. C F-. 2 3 C -.  0 4) — .1 C• — 0 F- 0 F UJ - - 0 .  -V I— UI4’ ) Z 9 3  OF- . 9 • . ~ J’

• - )/C U ’ UC U .  U. U. 3 C C U I F - -.  C 3C  C U O , _ U . / )— . U
3 9 0 C C .1 F-. 0 49 9 U -. — -f U. U C U. C I— - 4’) U. UI = — —C C CF-. U 9 9 . .9U.UI . UI 0 ~~~ 961 U U .Z  9 3
C C i-. -.0 ,. 3 C -.~~~~F-. F- .U U I  U U .  43 3 3 U ., - .UI •C  U.

— C l-. U 414 1 U ’ 1 C 9  — U C U .  C C  9U) C .3 II
0’ I— 414 C * 0 . C I UI I C - 4.. C .414 4.. F- U. 3 414 U. UI 4) - F- 9 4’) — U

- 0 Z 9 f . V C C’) 4’) UI -~~~~ • .U.F-.U-. F- C ’ ) CU I  - . 1 . 9  U U U Z 3 C O ’  9 9  14 1— C
• U. -.C 0 i-. ..V UI U. 4/) 4/)r.4 ,-. F-. U. f-I C CF- . F-. U C U . . - . C C I 4 I . f-.~~~ C

F-. 0 3 F — 3 U I  C C — UI .. 9 , . .9 C 0 4 1 4  U. I 0 //C C . C r / ) I— . C V f .4~~Z 41 3 - 3
U -. 13 X F - V U .  C U. 3 C C I I )  0 1/) .. 3 C 3. . U .F 9  U . . . LI. 0 U4 9 4/43 CO  U I U . I - . Z 3 0  .0 F-. UI  C C F -. U I U .  ~~ _14 F-. UU —~~~~~ •U. ’3  — - - F-— 4_I C 0 . 3 ,-.

U.0 UI ..VU.3 - C C .  C 9 - C’ C U I  CO  U U . 3  ~~~~~~~~~~~~~~~~~~ —— - z
.0 3 9  U 0 . 9  1 41 — CU.  4.4 CU.  f - I a -  O C C U I F- U O 4 ( 1 X U . U - .C C

IL # U . 3 U . U U .  C 9 I ). 4U. F-. 0 114 9. .F . .  C U . F - . C I CU . O U . 0 2 31— C 3 9
a- -.F-. U3  C O  U. U. C-. CU .. -  94,) 0. /-. O U . U U C  . C U I O C C . 4 U F -  - C  I l — Il
-- 1/) U I3 ’ — . O U. Ill . O O CF -.  .1 F -.0 3  . C-. U. U IC U ._ . 3 U . V C’F-. 4/4 ~) 9  • ‘)~~~— C 9 C 1 1 U . F — . U. U. U. F- L C O C . . C  OC’. / I U . Z C . 4 U U U I U . C 1C’1 f — C  -
— U O  C U I . - C C  0 U. U JU I  UI ~~~~~ 3 C -.  ..J C —. 9 3  .4-. UI - Z  .

~~) 9 1 4  Z U F.
U I f 4  3 4 9 4 1 . - I OU .  C C I_ I  L C F —. 3 I  — .- . F - U 0 . U . 4 )1 C ’ ) , . V U .C L  — F-. C —

• O F—. X X  U.U. - -  - CU  3 Z 0 . -. Z 9 U C U . 4 1 C’ V U . O C U C’ .Z 1) 14 1— U . 1 4
r-- 3 4 )  U IO U I  4.. U .. C’. . .U . —. - .  U IU .  C - - fl O U I U. - f 0 -U. 0 0 . 9 3  I - C C’)  =3 =
4”- 10 X C L U .  414 U.U. I- C U . 0 O f - .3 43 .3 5 C ’ -  3 1 9  - 9 . 94 ) # 3 C - .  Z 3=  f - . -~9 C - -  -~~~~ UI 0  9 - 9 0. .. J U . C 3 F. .  3 C 4 )~~~~~~~ C4 1 4 C C 9C C F. ~V 3 U  F-.
— X I-. f/) 4.4 414 1 - C  C U- -U .  >.4 ( I 0 ‘—~~Z F- Ufl f.1 U . f - C - 4 40. ~~~)9 C C 4 1 C ( )  F - U . ’ V  1441 04

• I C 9 ”  F-. F-. F- . . C  U9 )oICOI.. 3 0 9  3 0 4 9 U I 3 / -. 9 9 3 9  9 U
‘fl i-. U I Z U I F - 1 —  .. II 0 9 4 ) . . .  U .3 4 1 4 C F . U I C U . l ,  0 . 4 1 2  1 4 4 9 9  — . 9 .~~ 9 U C - C  1 4 3 2  9 C C

• 4_I ~~~~~~ F-. - .  3 C O X U . X C / ) 9 3 3. - .  C C C  .0 3 3 4 4 —  C C  9 U . 3
F-. U I . . -- 41 - .  - f C - .. 3 U .4 ) O C’ . . U3  .-~~2U .  C C Z C C ’ C C C C 4 I  9 0 .  0 . 1 0 .

3 I 4’) U. I 9 I_I = = 4.. -9 ..I I I a- C — U. U. U. U C 49 C U. .4 UI II UI U. U. . 4  C C U. U. C 3 U. = — 3
-- 4 U . / / ) U . 4 ) 4 )  O V . 4 9 U .  V ‘U I  I ~ 9 I - U .  3 4 _ J~~~~ U3 U U U 3 U I U . 5.-. U . C l U 2~~~~~— . .

VI — 0 U F. C U UI U. C = S C — U. If ~~~.~~~~~ ,i C - - — U. U. U. UI 414 04 II U. U U 4) 14 —
~ 33  C U Z U I U I C C  2 9 9 4 . .  F— ..F-. F-- l - . F . F . . .  ,-. 1 — F- F - F- .I---~~- / - - 3 3 U .U.... 3 F- 3

— I 4 1U . V —C O - . U  -V ... C f - 9 4 1 99 9 1 V9 - .4- C C C Z C Z Z Z C 3 O . . 44.I U. C ’ — . C U .
O F - F -  U C C 4 . U . 9  UU. . -4  ..I 4 / ) U I U 4 U . U .U IU  Co . 3 U — ..-C’ -. .-4 ,-. 9 C C C C

• — F . C ,O F - U . U  4-. l-. 4.J F -.F- F . F - F - C  0 4 9 9  3
~~ 3 U .  9 ’-. 3 U I I- 4 J F- F . F - . F- F - 9  9 . 0 1 - .  1
‘4 U F - I I )  . . 4 Z 3 . 4  3 9 . 1 0 0 0 9 0 9  3 2 3  —
— C 0 9  U . . 9 5  — 3 9 3 9 33 - 3 .0 — --. 3 ~)

‘4 f - . U I 3
94 - /
U —  U I F . F- . . .
3—  ~~~~~~~~~~~I

3 9 3 9 3 3 3 3 3 3 3 3 3 9 43 43 3 0 3 0 3 4 33 0  0 43 0 3 43 43 9 3 3 3 3 33  33  0 3 0 3 3 43 3 3 3 3 0 3 3
3• — 0 — — ‘4 ‘4 fl C S  C (S Ifl .4, .3 — — 0 0  3’ 3 43  3 — — ‘4 N ‘~‘~ a- S -4’ f l . 0  .3 fl-~~— . 0  .035 3- 0 0 — — ‘4 ‘4 —. —I 9~ .fl ,.f l.3
II 0 0 0 2 0 33 9 3 3 3 3 3 3 3 3 9 0  

C’ 3 3 3 3 0 3 3 3 3 9 3 3 3 0 3 3 3 3 3 3 9 3 3 3 3 3 3 3 0 3 3 9 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

‘- -A
“3
U I
1 4 3  — ‘43 -  .0 .0 0 

--~~~~~- •~~~~ - • • -- -- - _ _



145

-- I-.

C

— 1/ )  O F - U  U . C 3 I U  U F -I  F- UI 3 L_ I C 0 . C  U. 9 4 =
-. 9 4  a- U. 9 U. 9 2 - - C  UI 9 4 )  UI 3 U UI -- — UI 4/) .1 F-

= - -a - U  4.. ~) 13 F- 41 UI UI C UI 43 C U. 3 F- 3 F. F. U I -  50  U.
I UI 0 3  UIC — C13  UI - F -4 3 4  5 9 0 C I IF-C  U.
‘4 1 C’. UI I 3 4 9 F -  43 UI F- F- U. UI 413 C U. 9 3 .3= -- 0
35 — F- = — UI -F-. 3 9  - ‘4) .0 C ‘-I f-. U. 411 4/) IC’ - C’) UI —

F- F . C I X  C’) ZUl U 0 9 - - U I  34 3 = X Z  .-U. /1) F .- - U I U  C 0 -
F ‘I = — Cr /’C U I CC  3 U . 9 2  .14 I 1 .4 1 —C C  II) C CU ~ .49 ~~ UI ‘414 --

F- --  0 0 .U II -  C F - a - C U .  F . a - 1 4 3  U - -  .VF. 9 C C ~4 C 3 9  41F- 413 —
U ‘-4 39  1 9 9  UI 3 C 41 F. 2 9 UI U. ~) F-- I— — 0. = C U -0 3 2 4/) F- C C C’
O — C 1-. 9 F- 41134) UI V 9  1 4) C C I C V V  9 4’) 9 =4.. UI 4’) 4 9  41-. F-
I - a- I.. I—. 4/) - • C O  UI ‘- 0 UI C/C C U. 9 C 9 U S U. C’~~UI S H C

-0 F. — 3 U. .-I UI C C II /4’) 0 C’ C II UI = U. II F— F. 4 ) 0  U. 4) C U  = l-~ U. C F- -. =
C U3 3 9  U0 ~~~~~ .Z  UI 414 9 -- Z U U I C U. = 9 9 4 / )  - O  — 3  43

S F. 0=  3 0 C C Z F .C  C UI 3 I U I C~~~ ~~~~~~
.
~~F - - •  0U I  UI ~~~Z C  U . C  U

-. 4/) C UI O U I C .  U .. 1C3  C 9 C0 1 / C UI 3U.C ( 3U U I  U 1 1  U . U . -  U
— = F - U I 9  U I C U 3 F -  O F - U I  41 3 C a - F -C F- .U. C X . V U. C F . 3 C F-  3 C- ~ 3~~.- ’ .  43
— U -.  C O U .  9 4) I I C 4 ..  F- I 0 9 U  0 0C C  UI 933  ~~~~~~ II 34 3 C

4/) 3 F.U U 3 F - F . ’  f - - C l - V  C --  0 U .U I  4.3 3 3 3  9 ( 3  U IC O C’ )  1 - U C I  1 4 4 J~~3 0.
9 1 -  U C I U IC C U .  C U IO H  4~4 3 0 . 1  - F- U . U I  _I U J U Z  S C  C -.4 1-. C I C  5 4 1 1—  -,
39 4’1~~1 I -  4 ) U I 5 3  3 1 4 )  5 3 0 3 0 9 =  /~) , 4 ) 0  - . UU I  - 3 - - C  U U V V  --

— — I —  4/) .-. 9 C’. U I O C C U . 1 U I  I -C F.  UI / / F C C  ‘4) 1 4 3.* II ..0 .1 / 3 0 4 1  U 4 1 C 4 1 1 4 U .  I-
IS 4 ) 4 1  4/) F- I-. ~~~~ UI F- F. 4.. --  U. — . 9  1- .11 41 ~~~~~~3 C F- C C C - 2  F- — C C
— 4 / C U .  C C I  — 0 U .  I_ IC I0.41U.I0 4 . 4 3  O C ,~. 0 . 4 1  — O U a -Z  .9 .3 -0 9
I — . 5  U I/C /-I S 43 ~d 4 O  U I C C Z  - U I  2 9 U. UU.  .0 4114 CL. .  0 4.. UI UI Z U . , 1 4  2 ... 43

CF .  ... 4 ) 9 1 3  U I 4 1  4 )2 9 4 0 2  — 4 9  4 1 4 0  U I C I C C 3  411 C I C F - . - VC -.4 43 U
4) 141- U . C - .  U ’ -. F . F .~~~~~~ 4J .-I .-~~4J .-f ‘U414 l--.F-’-. ‘U

~~0 I 1 4 ) 4 ) 0 9  0 =  UIU.3 43 O L U .  .3 3 015  43 43 3
O l  U. C’) I- a -  9 F .C U IU IU I  C S F -U Io .U. C C F - F - U I  C C
0-0 F. 3 UI 41 C I. — — C =4 9  14 0. — C -.9 ~~ U.C — C U. U.
11

-0 0 = 4 4 ( 3
VI C S F- U IU I
C ’  U. U . t~~~~~ C

‘4

-‘I
C C
U.
9—
Z 0
— 43
I)

3 33 0 00 0 00 0 30 3  0 3 0 3 0 0 3 0 3 0 3 3 3 3 3 3 O  3 0 03 0 0 0 0 9 0 3 0 3 0 3 0 0 3 0 0 3 3
• C

—
I L  5J 4 ’ . J’ 4 f l J’ 4 ’4 ’4 C C C C ’C C C C 4 1C C U C C 4 1 C C C C C S S S C C S W C C S* C S C C* *S t I’ 4 ( 1 t I 4’ .~

= 03 3 0 3 3 4 3 - 3 3 0 0 0  0 0 0 3 0 0 4 0 03 3 9 3 03 3 3 33 0 3 33 3 33 3 0 3 3 0 0 3 9 0 0 9 3 0 3
U.

.14
‘.3 4’)
‘ 4 3  U
U I  14
14 ) C -‘ ~~ 4’ — C 3’ 4 5 0

— 14 .0 .0 .0 11 41 .0 .0 .9 1104 

—--~~~~~~~~~~~~~~~~~ - - •  • - • _ • ---—-~~~~



146

F-C
U.
CI

C’)

=F-

C 49
3 C
-4 =

C F- 13
C U
— 0
F- C F -U I  --

U. 41 (31- UI
4 

:O C C 43
I
— F -C  C’)
Cl) C .0 411 UI

• UI CF -  C
I- .- F-. CC

= 4/)  C -. U
F- UI U. 410 U.

CI C a.
‘4 UI CI C 0 C
I F- UI

— C U C’. F-C  C
9 0 49 UC 3— C -- 0 0 .  - —
I a- 43 F- C I I  C’) F- --

1.4 = . 4.1 0 F-F.  414 U
43 UI I~. 13 14) U. 414’) Cl) 0 C
C F. 4.1 C 0 4) C C I  41 C
U. C U. .0 1-. 4.4 F- 43

UI I - .  4.. ‘14 U. C’) 4) ~~ 0
C UI 1/) 49 UI 3C 3 C U
C IC CI = UI U. C — U.

0 F- 0 L~. C 0. 43
4 3 1-  UI I.. 43 U.

UI C U .  41 9 F -C  43 = C
C — UI U. -. C C C F- 0

F.C C 43 U. U ‘ - C  C -- —
C C U  2 49 C I UI C UI 4. F-
0 4 1  3 4 / )  C C — UI C UI C 0 1)
3 UI — UI F-- C UI 0 0. U. 1 =
UI’) F. 43 C C = C C 0 = UI C

41 U — 4) U. UI U. Il C I F.
4 / C U .  0C  C 9 C F. - - ~ 34 41
C/C U C 3  S 1-. UI C F. ‘C - - C = C C
UI 0 — C U. . 009  ~4l C UI C —
U = 4/C F. -- F- 3 U U. S U. U.
3U .  C U  C CI) -- 4/) U. U . 4) F-  C 2 -  0. U. 0
5 4 0  0 UI U = — I II 0 UI = 0 F-
a -U .  C 4/) 0 1 F- 1414 I . X  49 0

U = F. 4 3 , .~ II) 4,) UI C - V  3 -- F. — 49 9
• UI 4 1 - 4 1  U. S U. . F- I— C = F- = 4~I F -  2 0

C OC  ~~~~-. 4) Cl) 4/) 0 a - F - 4 1  UI 3 ’ .  0 - -  —-. -‘ U. 49 .-. U.~~ 0 C I’ C — 4) F. C -. — U =
• 4 1 1 -9  -- C C CI) I- C  — F -C  I.. C U.

C U  F- U I  34 )  — U. ~~ 4/) O 3  C C/CU.  U —
OC  0 =  F- 44 — 4 C C = ~ .3

3 — - -  OF .  41 = 13 I = _4~~3 4  F- # F-  5 4. C
.45 F - U I  C S UI 43 U. C - _  — F- C’) 9 Cl) LI) . F- 4) —
-- U~~~~~ 0 . 4 / )  4 1 9  .3 — 41 — F - . V0  4) 9 4  ‘ 4 1  U. U

— 2 F- C 41 43 4/)  U. 14 11 C C Cl F- ‘4 OU 41 C 0

— I U. - I -  F - .  C C 9 U. 41~~~~~~~ -- CI. 3 3
U. 0 U - 9 4 3  .14 C — .1 C — -- 3.

54.4 U 1 30 . . .  .-.C U F. --F- C .3 3 L4) .1401 .0
‘4 4 1 QF. ~~~~~ 4 9 0 1  U U. 3 U I9  U. - 1_IC 0 =  43

4 ’ .  4/) C S U 0. = -.U. S - - 9 U = U —, UI F-. = -. UI 49 F- 9 4’)
35 UI ~~ --  a. 4’) 3 .14 4/) F- C C C C  U. I.. 4.3 C
— 4_I — - —C’) -. C UI 34 - 0 F- 3 4.4 C — F. 411- C C C -14
I 0 F- UI’4  C UI 43 C = -- = - C ~6 U. F- 0 — -.41 0 — UI 9

F. C . U  U I.  . V4 1 9  C F - F - U I—  4/) — 14F.  C413. C F -C  — U. F-
U a - I C -- 5 - .  C C U .  F- 4 1C C  C 00) 03 -.UI C C U  F - C - -  0
0 F- U. F- s I -U .  F - 9 0  C 0 . 4 1 4  C U .  0 9 1  F- F - I  . 1 3 4 / C  — “4‘)
I I -C C  0 — 4 _ l U .  - U I . VC U  C - U I  —.41 a - CC  4/) CII- ~~~~~~41 U. U IU I

~~~~~~UI = 4.41 UI C U C/C U. II F- F- S  -, — U C C/C I F- -4~ -~ 3 4 0
‘4 1-35 F- C U. C C 0 — - ‘.- U. -~~ 3 1.. — UI 1 4 1 0 . — C — F. — U C 0 4 3
C U F- 2 I-. C CI UI C C II = UI U ~~~~ = C — UI 3 F- Cl ~) 0 4)-_ CU 3 U. CJJ U. F-~~ 9 4)F - U -. 4) U I F . C U IU . U F- - C O -C - - ‘.1 .14

— C O O U Li. UI CO C UI C C 0 UI U . S UI UI a - C C = 0 C -. ..0.U. .1 . 3 9

— 0 9 4 = 09 U .0 3 0 0 4 U . 43 4/) U . 0 F -F .U I - . . 3C 43 U. C I - U — C UI
I - a - F - U. C U I O C U C U C C /) UI C O C C I - U II U . UI 4’) 513 43 1/ C 9
9 ‘I C - — I_I U. C C LII 0 F. I F- C = U. Li. UI — — = > I]) = il UI — = CI -—0 -~ S .14

‘4 U. - . 00 4 UI C 4) -- U. II -_ UI 4~F U. U 0 0 0 . .40 F- U UI C F- 4 4 1 ’ -~ - 4_I
‘4 0 . 1- 3 3 41 CC UI 3/ 3 U -. 4/4 UI 9 2 4 1 UI 0 43 0 . 0 . U C 41941 = UI 41 C U 43 4.. — 4)
IS 2’UC C’) UI 9 CC — L C Z U C ’ V -.9 5 5 ... 3 41 41— 13F. 0 U U .U
— UF- C UC U. U. U . C C’ 4 C 4 3 43 U .S IF - F - .~ .3 34 I C U a.0 C = 4 ~
I . 03 9 U. U. 43 CI. UI U . F- U I CU . 43 1 4 5 M ’- .U.U. C a C F . -.~~~ U . . C UI 43

ICF- C U I O U 1- 3 I-C) C U .F - 3 49 .143 U I 4) L 3 C O Z 4 1 — — C .140 U . C I U . 0 CF - 3 I-lIZ
U UI U U . U 00 I- U — UI — I_I — UI U. UI I-. F- 1 4 1 4 U 9 4’) 04 4) —

C O CO U U IF - 3 5 1 1 3 34 3 S F- U .4 3 -3 C XC F -C C F. 0=.)
o I 294*. a. 0 CC C F - C UI C S 1-. CU. C UI C — — C U . C U . C C F . .14
-.0 -. U . 3 C C 9 a - — C C U. .9 U. — F -~~-l3 043 C 0.~~~~=

U U I U I

0 C/3 43
V C O I -F - C a -C F - I-
5 II) 4) 4 9 UI Q ..0 49

N

N

U t .
0 —
I

‘I) 0 4 3 0 3 0 00 00 3 3 0 0 9 0 9 3 3 3 3 3 0 3 0 0 9 3 0 0 0 3 3 0 3 0 0 3 9 3 3 9 0 3 0
0 4 5 3 l~~34 f l 0 4 S 0’ 4 3 4 S3 ,.*3 .5 0 , (S 3 4 1 3) 53 ~~
—
II 04 0 U . 0 04 0 0 4~~~~~~~ 04 3~~~~~4 , 0 ’ 4 ‘ ‘ 4~~~~~~~~~~~~ f l f l~~~~~’4’4
I — 3 0 3 0 9 0 3 0 0 3 3 9 9 0 0 0 3 9 3 3 3 0 3 0 3 3 3 0 3 0 9 03 0 0 0 0 0 0 3 3 3 0 0 3 3 9 3 0 0 0 0

•1’4
5-34) 0
‘419 = — ,~~~~ VS S C C 0 .4’

S — — — —— — — ._ _ — — —14 .9 .9 .9 11 .14 0 49 1 4 1 4 14 49 49

-~~~~~~~~~~~~~~~~~~

147

UI
C

U
UI

=-. -- - F-
- - -- =43 C U 1) C U.

U. 0 0 F- 0 0
= — C’) — -- —U F- - C 4/ F- 1-3
C = CI CI .0 U C
UI U C U 0 —

= UI C -. F- C C C
S C C C C F- C

C U . 1- 0 0 =
111 I — 49 49 2 13
11 C -. 1- 4 — UI
49 0 41 U U C

U. C 43 UI C U.
F. C C C C UI
3 43 = F. F- C I =

45 C UI F. 41 -- 1 C F.
I U. C - 1*. F- 0— CI 0 0 — — -- .- 0. ,~l C F-

C 43 43 4/) ..- 41 0 43 C
= UI UI UI 1 / C - I C C

= C F-0 4 LI) 0 Cl)
UI 1 1 4 U C F. C -- 44.1 I- C U 41 =
U U 8 4 / C I- C — 1-43 C C — UI
C 4 - ~~~~~ F. = 41 410 F- 0 C F-
3. C - U I F - C U C UI LI 41 F- F- U

F- C 9 4 1 . 0 F- — C 54.4 -- 43 — 4
U. 5414 0 UI — C 0 9 = = S C C

UI 1 - 0 — 3 4) U. C .1 U. U U .1 43 4=21 - 0.490. UI - F - U I U. F- C S -- C =
F -3 -.- . 0 C OU C C U. — 4 3 41 4 4)

0C 49 1- U 0. = 0 3 5 U LI
U.’-)UI UII I 4 ’-. 4.10 49 4/) 49 U — 43 9

• 3U.I- I- 0 UI 543 C I-. 0 F- UI I
U . O C C I U 0 UI UI 0 UI U. 41 = I349 4 9 0 . 3 C Cl I 3C = F- = — U =

C 49 .-. 4. UI UI + C F- F- 43 F- C 43
UI UI I 24 . . C F- C 0 43 UI C UI

I U I -.0 UI 9 1 1 OF- I C L~ = F. C ‘4
UI ..1541... 49 U. 0 - - — 0 — - - 3 C’) 41

- UI 0U f - C C 3 CI) C) -. C F-F- CU C’) = -. 4)0 . 4) 0 4.. .3 5 2 — C - UI -. C’)
Z Z C C C Cl) 0 3 3 3 3 UI UI 41 C

U. 0 - I I = C C’. U I -- SF- C 0) .~ .., 0. .-. — 49 C 4.
F - C - - C — C F- 0 ‘-I F- 4/) U. F- 43 3

F- C -‘-S F- — 3 F. C 0 41 U. -. — U — U. U F- F- 4.#~U0 - UI 0 1 01 4 3 - C - ’~~~~ F- F- = U C 3 C - - U. a-
U 43 ... 41 UI - UI — 3— -3 F- = U 4 --9 -- UI C S U. — 4/. 9
2 5 F- S 4 1 4 1 I F- C F . - . Z U C = C IF . - 43 0 I-. --~~~~~ C C’)
0 I -UU I 3U C C U . CF - U I U . F- U4 1 4 3 — C’) ‘— F - U U

0)0 U. I-UI C C F- UI 9 43 O F- — CU . LII F- C 43 C C’)
5 9 5 U. = C’) 0~~C3 O F - C S = F-. I.- = .0 .1 .439 C UI --
U UI 1- 39 14 I- = IC I 19,-V U. 4.1 4/) 4 F- 43 F - C C 43 S

0 F- CI) COIL) ’.1 F. C 0 4 1 4 a -C .- C .o433 C F- 9 4U 010) 4
C’S -*4 5 C U. U. — 0 49 U 1 3 3 UI C C C F- C 49 C 0 I UI 49 2) 4 C 9
-. U.UI . .~~~~ I- .CU 3 - 0 - 4 3 0 C U . C 9 1*1 4) I C Z.- US 0 U

— C 11*4) U. 0 F. 4 3 4) ~~
U. C C-. C = F. C F- C 9 C — UI -*1 — C

— C -’F . F .3 3 U. C 2 0 . 3 U . O F . F- 4 1 3 9 4.. 24 1 43 0 C c) I F. —
O U I C - I C CC U I U. C C C C OU C - C U . C O S — ..U=Z 1 1 4 U 3
I U . U I O F- ’ . IS 0 U. UI t14 - - O U O U. F - UU . -IF. C —U 3 43~~ 0 - -3

‘4 - f - O C O C I S C_I 2 1 — C (31 C O S 43 F. --U.U. 0 3’~3 C S
‘4 41 4) 4 3 US F - 4 /) I—. UI 4) 4-0 5 • 4 /) C F - C’’ O U . U. UU 4 3 U 4 3 U U3 F— 9 C
IS Z UIF.L..’—. C 43 F - F -C C I . U I C’) F- C C) 4— 0 4* 1 + O O C U IC CI) = -
— C C C U . C C UI-13 I- C SC 44*1*4 5 514 IU OC 4 3 U . C O ‘.4~~ fl

I C F- U 4 9 CC UI F- C U. I-F- 4 35 f- . - I 34 — U.S C F - U I CU . UI U UI UI 0 C -
F- F - 4 1 1 f l 4 1 -.’0O CI 3 — I-LU a- U — UV = 1- 4) 3 U .O C S ZI-
U C F. 4341 C I—. — + o-. C 5 0 F- C U. 4,-. -- .39 0) C * F— U I— a- UI F.0 C C O 0) ’ l - F.ZCI 0 4 11 U I- - O F- - U I3 — I 4 1 1 4 1 U . F-
I C UI ..I I UI II .1.4 U. U LII 3 U. C) U II. 4-. - U. .4 Cl = — 43 0 = = UI 5 F--. 3. I - l I

-C O F . 0 + U C I Z 43 O I. 3 I IF - CI C = I C _ I l— CI) F -C O F—. - -F .4 3 UI L*. 2 4 3 ”
~ IC lC F - U . I UC~~~~~. C C CIU I - - - - C O - 143 C C / C U C - -I C 1 UI 3 53 43 4 .-.

~~ f - U I “ O C C U . IL.4 l — 9 1 3 F - . C 0 0 F - ~~~~~ U I 0 U . I ..Z43CI F- 4 1
-- U 2 4 3C . - 1 / C C I IQ 3 . 5 410 UI I - U .. IUC C C F. C CI) UI l’-.0 43 34 U IF- - VS
— 0 0 U I = I - -- O OF- C Z U . C 1 3F - U .U I 0. C --F. F - U 4 3 4 3 C ~~ 5 3 C U 9 0
— C I - C F- U IL . 4 Il l_I 0 I.I I C U . C 3 U . U O X = CU.C.) 4 / 4 4 3 U I U I U IF - 3 0 1 4 U Ir - .4*.

F . UU . C F- U . I- 4 1 U . U.U. - - 3U I 3 C O C C 0 4 3 ‘ • 3 C S I -C l F- I .3’ — U U . = 3a -
4/) 9 4 3Z 9 - . 543 43 U S U I -— OS IC 0 .5 - - 0 9 I-V ‘I 43 19 UI 4 4) 4 . 0 1 0 413

‘4 C 4 3 * 0 0 4 3 CUI CO C U IF -O U I U . F - -’ U C Z U 414 - - F - S F - C 3 U . U . 4 3 9 2 9 1 4
‘4 ..~~U IU .U3U I U . S S -II X U C O F - 1 3 414l)..’ U. C UI IL) F- . - 1 3Z 4 3 . .a - — — U I CC l - C~~~~~~~ .9
0’ ~~~~~~U . U SU F - 0 . 4. CI C U I’ . IC U I Z3 U I I 4- . U .43 . . IUI ..I C U ’-. UI —

I -U U .U 1 f -3 O C F - = C = 4 1. - .a - U = F - U I 4/) 5 3 4 1 (3 1 4 4 .)
• U . 4 1 U . C O V C L*. 4.. 00 Z 0 4 /) U C O U . 0.0 UI3 C CF - U . F - C— I - U I C 0. ’-’ U.

V S F - ~~~~~~~~~~~~~~~~~~~~~~~~~ C U . C C 4 1U U I Z O O ._I C C a- — U IC..C --9C UI 9 4 9
4) UI C UI I - C — —

9 3 43 U. 13 435 5 5 LI 4313
0 1 9 —. 4i. U. 2 3 0 . 4_ I UU. UI CU.
‘- -C U. 49 U1-4 4/) ..49 U. 49a —
I.
II
C

N

N
C VS
U t-
0—I
C.)

9 0 0 9 0 0 0 0 0 3 9 3 0 3 0 3 8 0 00 0 90 3 30 . 03 00 3 03 3 0 00 0 0 0 3 . 0 3 3 3 30 0 3 0 3 0
0 ~~~ .~~3 ,/I C C5 0 . 4’ 0 1 I O _ I 5O
— 4 9 3’ I S C 3— N t ’ 14 5 V S S S 4’.0 0 4-~~’4 O O 3’ 3 S Q0~~~~ .- 2~~N V S ’l ’ S C 4 1 t I.0.9’4,..49 49 9 9 ’ -.- N N V S V S S
I C ‘ 4 ’ 4 ’ 4 4 9 4 9 4 9 C 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9. C O 4 9 4 9 4 9 4 9 _ I’ 3 ’ 3 ’ 3 ’ 3 ’ 3 53 ’ 3 ’ 3 ’ 3 ’ 3 ’ 3 ’ 3 ’ 3 ’ 3 ’ 4 . ’ 3 ’ 3 ’ 3 3 0 3 0 9 0 3 0I—. 3 0 0 0 3 0 3 8 0 0 0 0 0 0 0 3 3 3 0 3 0 0 0 3 3 0 0 0 0 0 0 0 3 3 0 3 3 0 0 0 9 3
C I I)
II -
1) 54
0-1 3
1) 0
4)1 ‘4 49 49 35 0 3 — N

• ‘ .143 — — — — — — 54 4 54 54

- . I. ~~~ .1±1

148

-. Cl)
F- 4
— “ . 1
C . - 11

C S - UI *UI - UI U. 4)
- - I F- I C —
OF- C C 4 1
UI = -- CI -. U S

F- — — C
CU U. UI UI C U.

CI U .S ‘ C = = C C —
9941) F- UI 3 F- C) C UI
2 U. II — UI = -. C C F-

— Cl. — = 4
C U . U. -. C UI U. UI U
- CO - 0 ~~~F. U F- 13 41 U)

5 49 3 U. U. C U. C U C C C F-
I 5 4 9 4) 43 5 U 9 0 C C U 3 II)

— 5 42 4 . 44(34).. -- Cl) 0 4 - C U . 41 0 41 -1’) ”-.40 4 1 5 5 4 3 41 9 F. U U. = U .4) 4 3 1 4 1 1 01
F- U. C) CO F- C 5 4 1 -4 143 1 O F - UI ‘-I 415 -- 0 41 --

UI 44.149 C 0 C F- — — 43 0 .-‘ 5 4 4 44
(3 4 9 5 . 4 4 4 . 1- I - 41 1414 C ~~~- 1 5 U.I141I-
C C F - U . CS 44 — CC U I- C U U. ‘ C C II
0. I-I — UI 44 4/) F- C C 41) 43 C CC) 0 -- I --

I C 0.U.S...I C 0. UI IC 0. 4.1*
-.3 C U. -4) F- — C CI U — C

4 1C ‘_ ‘ 4 1 F . 4/) 541 Cl) Cl = 41
4 . 4 1 9 F - 4 C) U F - — O U U — 3 U . — U

CII — U IU Z 4 1 Z U = F - C I C C F- 1 4 1 1 4 1
4 9 4 3 52 — P4 1 4 1 U 414) 9 4 41) 41 = F- 9 = 4 1*
1 0C C 41411~. — 410 4 —l 4) 4 C ’ C S

U. X C I U ‘~ * 4. U. I — 0. 9 4) 0 . 1 / 4
2 Cl .49 -- U. C = —I UI— UI U. -l 0.5 .14 II C — — —

.~~ 4 9 - U 41 4 4 5 -. 13 0. C - - CC (32 -- 4 I I- I
9 1 1 5 4 5 F- U 0. F. 4 2 4) U. F- 0. C I- F-
2 . .5 4 UI UI ClI) 0~ - .5 0 9 . 0 41 UI — 0 = CI) 4 CC
C — U. F- C 4.1* U UI -0 F- 1/) U UI UI 0 F- 41 9 3 . U 8.4 9 4 3 0 9 UI O F - C U I U .U4 1 F. - - C C IU F. -- C .4 1~~.O 4 3 F - I Z4. 4.I F- O C’) I-. 0 4 — 0 41 F. C F -I- F.
3CCI- .l C 5 U . U .F - F-5C’-.-~ 4 = Q U F.Z~~~ C S 411/4 41
F . C I I C 0 3 4 1 l I- U . — U. C 4) 41 I,U I U. C 41414) 1.)
CC UI = C U. CF-a . - - = F- F- I— - - 5 F. F.

-- - . — XC 0. -. U . a J (I 3 F - F — F -C C - - - - 4/) U .4 1 F - F- s - - 41 3 C C C
41 I~~~~ U. C 5 4 .4 1 F- C U . 49 U 41 F- U 41 C U. F. U U I - U . 14
C 4 1 C X 4/. 4 U . U I 4) C F - ’ 41 (IC 43 4-. 4 4 1 C C)
U. U. 4 9 9 U = SOC F- UI UI UI 114 I S F. U U. I 4-. F-F. -- - - 410 .4 0 C 4.) 0 3 - 41 F - C U . C 44) 34- U. 10 4 1C C 5 UI 14
U. 5 = 41 U. U. C U. 43 U O U C O) ~~~C I 3 U U . 4 1 S I U4 * -S U .

• I C C U I Z - 4 3 3 — F.I~~~~ UI 13 9 4 / C U .— C O — C . 4341,- - . = —C CO = CU. 4) 5 C 4 1 0 C UI I 3-U F- - .0. 4.1 1 U F- C 3 4 . 3 34
C C) 4.) 43 5 0 UI UI -- 41 41 5 S - - 4 1 C 41 C I C’ F S - . S I * = U C C C0 4 C C O F- l U 4. F. U .0 ~~~~~~ 41 ’-. C 4/) .. I IUSU . — 4) 4 - . UI

.4W) a- — — 4 +4 U. 0 C 43 1/)411_I 4 — S ‘.I C I. - . O 4 1 *1. U. 5 1—. C I I I ~~~I
-- 3 5 S 34 43 — 4 9U SF -I t- ..’- Z U I IU U U Fl-.
— U. -- 43 - - S U l I F- C O C 0 U 3 3 U I F- F. F.13 4*. C UC U . -.
— Ci F. -. F- = C - 1 C 4 49 — 5 LI) — U. C U 2 1 U C U) 1 C 5 U C 4 1 4 / .

4 2 1)1 1/C C C) 4 ’ F- - II C F -4_ 1 41 U4 1a -C IC 14-C ‘3 5 4.1’- U a -C C 35 I -U .4 U
41 — — S — IC O U . 4 ‘4 - - 0 1 4 43 — U S C I IUC I 1. 2 U . S l U . C l I 4)
= C U. C I- C O O . 0 - — 0 U .C 5 II U . F- U I4 1 CF . ‘ 4 1 0 I F - C’) F. --CI) F- U I 9 4)

1). — — I-. ~.I I II 4 4 / I .9 — F- 1/44 - Cl’) F- 112) 149 C (IF. 41 .11* U C CS
I’ U . U U. CI ‘ - ‘ IF- 0 - — 3 . 3 I - 4 1 F - 4 1 5 — 4 1 E C O 4 . C l / 4 4) 5 4 1 IC C C) 4 1 4I)
— .1 S U I U I~~~ U . - 11) I 411.1 3 U — C) -_ . . 4 1 U~~~~ 11).0 ~~~~~~~ ~~~~~~~~~~I = 34 44 4 4 . 1 1 U . U . I I C U C VF - U — LI. U. 43 3F. OF- — 43 O F- C I I I
F- = — C — = 4,~~~~~ C C U ” 4 l-1 41U. U .. 0 U .~~ IU.C* 1 C U U . C4 1 U I - I- U I C U U . L 3 C S
.1 0 — 4 F - IC 4 C U . . . JF -4 1 CC C 1 4 U OC 4 1C U . - l.. C 4.1 43 0 C C C0 41 1 91-4. 1 F- — CO. F- I I-I -.13 — U. ’-’ — .4 5 3 . 0 . 4 .
I U. S II C C IC ’- .1 4 - I C c) 43 C~. F- L i 4 3 0 .1 43 3
.9 C C .. S C UI 0. F- C 0. U . C C U .0 UI CF -L I . U. C 9 0 . 1 4 1 4

41 50 . -I U. CO. C C 02 1 1)- U . 5 C 11 ”-’ 5
S UI — -. = — - 50. UI C -. U.-- 54) 4 3C F -~~i 4 3 0 41 33
— F - U I Z 3 0 U . C U I - U .U .- I CO

.4 9 I - U . 4 3

CI-
I-
IS

C l-.
U

9 3
3 1
— 9
I C —

N

‘Cl
C VS
Ut -
0 —C
CI

03 33 3 000 0 0 0 3 3 0 3 0 4 3 300000 3 0 0 0 33 33 3 0 30 00 = 00 3 3 0 03 0 990 300 ~~—
I I 3 0 3 00 9 90 0 3 44))
.1 -
‘I N‘.34
“34 _ I S ‘5 VS S S .45 ~) 49 .0 0 ‘4 35 9 9 .1’
~~~~~ 

__l ~4 “.4 54 54 54 -~51 5~ ‘4 54 ‘-4 ‘4 45 1)
.9 ‘.1 49 -1 49 49 _u 49 .~1* ~*4 49 49 14

~ 

-—~~— -~-.-~~~~



149

U.
=
F.

U. -
5 43
1 0
U. 1
0• -- 0 U.

— U. C
CI ‘. C

C U 0—. -. U. 1 —
— = F- F-

C 4 F. 414

1 — IF U .‘ U. =
C 43 -- UI F. 3

• CI UI C — 1 U
— C 0 -- CI C
I 43 — CI a- C Z
= 2 F- C 0
C I-I (1* 0 0 C
4. — = — U 0 41)
— 1 C C F- II 44 5
U. C U. F- U —~ CI 0
C ..C 4 CC) 0 — —C - U .  49 C C F. U F-
U. F- ..’- II 4-1 F- LI) UI - ‘
41 U)UI ‘) 4/) — 43

415 F- Cl)C - -  ‘ CL) C 43
I 41 C — I- — — C =

— 41 UJU. . .  43 = C U
IC 41 0 F- C) C ‘5
-- F- F. 43 U 5 1 -4

.4- 41 U. 0. U. 1.1 - - -. C C U.
-Id 44 CCI) s 0 3 5 CI) - C C 1-Id
,3 4/) I I I  34 ._. CI 0 34 43 0. -13
C C -- C I 41 U 3 UI 43 F -C )
S I F- ‘ — S C U 1 43 43 C 4/)

U 0. — C I -  0 a- 3 s C U —
= U. Ii I 0 S F- L~. 3 U C C -
Cl) C IU .  C — F -  0 3 01 - -  U -IF-
— C C C 3. 3 3 U. — C -- 4 3 1 4
I C 43 -. 0. ~~ — 0 34 II — 01 3 1)
C U. C - — 5 3 .0 F. 3 3 34 U
C F.-. F- F CU)  43 C 14 4.4 1 l ’ .C - .  43 .3 U IC
0. Cl) .-.. CI U — - 3 ~l 4.) U .S  41- 4) U 43 01
— Cl C F- 59  UI U. U 0 U. = U. — U.
U. 15 — -- Cl) 1 _L U  43 F- U 43 C 0 9 0  34 C 49
S C U. 41 ~

.41 s C 0 4 = 9 C I C — -- 0 -.
C 50. CII 9’- C IC I = C C 0 F . F -  S C )  — U.F-
U CI1 C U 4.) UI 54 4  . . — -- — -.0. — U 3C  F- 00
(1 F - U I  ‘. UI C CU  CU .  U.~~~I 34 0 . 4 / )  F . 0 I  U.U.  — CC

(IC 11. 0. U. U .S  11 43 4 5 5  C l / CC ” .  — . 5 0C C  5 43 14)
11) .~~C 43 0. 43 43 4 4 3  C U U .  4 U 0  O U U CF -  44. 0 = UI 41)
41 U U. U. 0 C 2 3 -. 4.1 U 3 3 F- C — — C .0 IS C) I U. 3 43 C

413 41) = 49 UI U IU  4/. 4 . 4 .  IC C . C  4.3 L3. F. - O C F .  C — U  C) U .S
C CF .  U a- U. 4.1 ).. 3 F .0 U I  Z I l 4.) F- .- L 1 0 U I 3 .  F-3  C
U. 41 C U. UI U. C = F-. — — U ~~~l -. = C = LI II) C — U. 14 U. U
= CC I  U. = 43 3 4 U .  U. — I  O C C 1) U I U I S U I  U CC  4 5 9  = 43
F- U. 5 F- = 3 IC C~~ 1l/C 14_l l 3F -S  C ~~ .3 4 _ L U .  - - U .  — .3

0 5 SC  C F .  C CC  3 UI C I~I F- 0 4 1  = .4 0 1 — 0 1 2 5  — U U
3. C 4.4 C = U. U. .1* UI 14/ 4. O Ut  F- 1 4 1  C 3 5 fl LI 34  I— 5 4 0  = —

— = UI Ct) - - 4-. = 4- .— 0. 0. -_  C I C LI. S — LU C — C U 0 = -~3 43 - C
• .3 F- U. O U .  4 /S F-  C) U. 1..S C C .  0 -~4 O Z I CF -  F- U .  — 3

5 .14 C U,3 — 4.i 43 04 )  110 U . I 3 ( 3UI U 1 0 0 .  U CS  F-
- • 0 — = 0. 5 1 40  13 0. 43 U. S C 3 . 1 4 5 <  U C _ I  C i~ 34 43 rfl U. I = —

SI I’ F -U I  UI U. 4.) I -U I  14 = - - C 43 4/1 C 1-) 0 — U. — 0  C 43 0 9 II = 1/4 U. = —
-. — 0 U = 1-. U. 5 -3 C 43 4-’ U. — C — C U. F- It -— S 34 9 = 1/I C U — ‘C. C — .4) 9 43
— = C CF. 00 C 23 F- 4.) 4.4 0 ‘Id 5 4-. 44 0 1 4  . 10  1 U .  = )< = = = =
— 41) 3 — 49 49 01 IC IC — U. /1 C 49 1 = UI C II 0 U = C 1/2 = 4.1 LU 1) -— -Id i_I 0

C U. l~ F- C S U. II U. — C — II) 1 U U . 4 3  43 U C) — C F - C O  34 .3 U. 14
I — C CI 3~ C — .3 I 3 4 4 3  I, C F. C - - — C 43 II 34 = U. C C C 43 14 II) U.
U 0 1 4 4  .1414  14 C’-’ C C I d  ~~~U. 9 41) U. F - U I  41 ~.. C O  = UI = C 1 )  U. 0 34 U U.

‘4 .2 513 L I - 1 3C- l  4.1439 . 0 3 4 4) OCS - _  0 ”  F-I3 C U. 4) 9 =
3’ CI CU. F - C  F- U I  14 a - —  L 3 o~~ .10 C — ’ U IU .  0 5 90  3— . 1/) 3 4 F -
— — .IC C —.0 99  UII—. l--- I.4- O U I —  I14IF- IU,9 ,.- 1 4 I . 1 C) C I - .  1 4 3 4 . 4 .I LI)
I I 4 1 4 3  U . F-  55  43 F -F - 0 U .  L,.IU.. .I UI O I.5 .5 3 C U .  .3.~. I =0 1 4 )  5 11.

F. C C O I l  .F- C U I/I _C O C’. 0 4 3  C F .- - U C. 0 4_) UI C . S CF .5  C ) S UF .
C) C . l — ~~ -— ‘ F - C l  U. ..I 34 1 1 - / CC 3... C F- C  F . F . O . U . U .  (IF- — 3 — - C - - 4 2 1’ U . L U ’ — .C C)
0 0. S — F- 43 U. U -. C — 4 1 -. U .  — 10 4.) F- C -I II 0 U. — ..-. — U 49
I 9 1 0  0. CL) U.1 .14 U. I C U  I- . 1 4 3 S - -U U I 4 1  I C CI II) 13 43 11. 43
.9 a I = a- 140*  0 55  X~~~~ 5 -1. 5 . 2 9  1I) 4 1U4 1  = U. - C S U. — U. — U. UI 5.”
— — C C  F- 0. C 4 - C  C .— 0 . 0  .2 0 .0  S 0) U I — S

S -01511 U. — 03.411 a- — a- —
-- .315 S I  F - O C I  fl ~) 43 C C C )  .1. .3
— 5 0 1 4 1* .  I-I S 41 Z U .  I - U .  S C I . O C U .  = L3.~~I4
— .*3 .~~~- 3  4Z .U . U I 5 49 U. .. -.49 U. — - - 49

410.-..
0 C C.) 43 (3
C =0.11) C U .

1)- U. ~~~~~IC 1115
35

I)
9 0
3 1
- - 3

-5
N I
N

C”
Ut-

I

9 0 0 3 3 3 C 0 O 3 0 0 0 0 0 0 0 0 0 0 9~~~~ 3 9 O 0 3  3 0 0 3 3 00 3 3 3 0 3 00 9 0 3 3 4 3 3 3 0 3 0
0
—11
II.,,

C 1 5 4
‘.34
113
UI .4/ 54 N “ 45 0 0 -. 49 

_
~04 43 14 ‘4 II C C  4’ ‘5 1) 4-1 4-1 45 fl —

14 U. 49 -11 -3 49 .14 49 01 49 49 4) 14



150

C —
• U. F-

F-
F- U.CC) -. 41

0 CI UI
C 9 43
C C 0

C U
U. C I-- — = - C

CL) CI F - C  3
C C -~~ —

0
F- F- C F- 0 9
C~I U C 41 C U.
3 0 UI 0 — 0 =

4 C C 5 43 0 U F-
• F- F- F- 4 C

41 CI C C 3 —
S C — C — .—. -
UI UI 0 I U = CLI

II U. = C U 5
U. 43 ‘4’ = C C F- 3
I .. C C F- 0. UI I-

• 
I — 49 + UI U. UI
3 U I ”.  F- U. 1 F Il l. I
C OF-  F- 9 0 0 F- -~~~~C U .  U. C 5 43 11) I
U. F -4 1  41 F- U. C 41 U I0  0

(3 9 — C C CO  C.9 21/) U.1M U. 1 --41  49 = 0U 0.
I 4/) 4 1 4 9  ~~ 5 10.41 — F- C L .  --— 4 3 . 0  U 0 C 0 U I  I 5 C/C O 3IS

CI -C UI 0 U 0. 10 C C C — — C F.
410 0 F- -IC C” .  C II CS
1 U .  104 C 0 0 a -U .  C C = 1.3

= — CI U. 0 C U. C — U. C CC  U. C
LI. ’U. U. U. 0 — -- C 0 0 0  3 a - U .  a-C

C 3 F- O C O  F. (3 I 0 -- .0-I 00
U. 

~~~ U. U 44 C UI F-C I = UI F- 3449 U
1* 1*51 0 F-. -- 0 41W + 14) 1 CU C O 111 -4 34 10 . C C C F- 41 --0 UI C — F- 1 0 -- C = UI
3 0U.0 0 4-1 2 4 1 1 S F- — F- S C C) C F-I
IU IO I-I U LII 00 0. CI U.S S F - C 4 / C F . —

4 9 U . F - F - C U IQ UI 4 14 1 Li 153 41 F. CC I SF . --
U. ~~l (3 ” . II F- = 0 = 5 U. C C F- IC F- U U.
C O O 0 C UI -. 4) 4) U. F- U . U. U. 43 .-I IC — UI F. 43 .3
C F- C U . C ~~0 L) OF- ~-‘ = 0 0 C U. -. U. U. I-C 0• 0 4 4 3 3 00 .2 C I-. F- 0 0 F- C/I C 4 1 - 1 4” L 4C I

C3 04) Cl I-. F - S C C U . 43 I U F- — II 4 4 4 44 4 C
F- Z . 1 C UI 41410 05 0 414. U. .1= -- C F- U I 0 UI U
1.11.1 C I U . C 13U2 C C CF . CC 43 04 F- Ci 3~~~~C F- U . C

~~ 0 ’O 0 U I C U . III I-C U.~~-. C 50 — 5 4 110 3 C ” .
C C 3C O U. - - .C9 F- 4 9 . — UI CU -- F- U IC U 41 0
0 C U UI ..’3F- 14) F- I C F- — .4/I. 4 3 U . UI ICCL. .1)9 — =
4)4 1 UI — F- II) — C 20 ’ 4 I UI U. 30 5 8.3 1*3 U. I- U

• 1.1 9 — U. 41 F -l i U. F- C U. U. 4 9 5 ‘ O 13 — I — — 1_I C .3• F- C O CC 0 I I C -. 0 49 10 C F . “ . 0 +1 F- 3 I 3 1 O C
UI IF - CS U. F - O F- 111 CI UI 1* 1-U 0. 41 F- U — U C.O C C -- C 0
IL) C .-. C — II C C F. 11) UI C IC F. U. 2 C C II U. C 0 . 2 C 0 .4) - . 0 LI C
— U. I ~~F- 0,4 -1* a -U . C 1 1 . 2 = S 0 U.S - - C C U . C 4 . _ I C - - U.

C O - . 4) 4 1 4) UI C UI C F- -- U U. 43 — 5 3 ~~~C - - 43 3 ... 0 — C =
“.F- C II UI 2 10. 0 F- — 104 = F- F. UI Ci 0 UI C U. C a- - C U. 0 F-

U. 4 1 4 . 4 4 1 C 1 C 3 1 1 II 1 4 11 IC F. — U OF- C — 41 CU. C C S 4 3 L) —
C 0 . 0 4 9U U I U I 2~~~ -. 1) = 143 0 C) < F-F- C U S O C 5 4 1C = - . 4
U. F- 5 4 3 3 F- 1.1 (3 U. 4 3 9 . 2 F- UI -. = 43 U. 14) UI I- C UI C C 010.1-I 0 9 4 . 2
= F - C I U . U I Z C C IC 43 0 03 . O Il) IOU. F- U IC 4)43 = CI. 0. 0 . 0 . 5 1 4 4 3 4 3 0

- - 43 — I CC . 0 9 O I I 0* F- 0 U 1 C ’-. 0 4 1 41 U .0 F- C F- II O I C 3 3 5 O U C U
It~ --1.1.0.24) . . C I 9 UI C) I F. 43 I U C 04) 10 -. — II i/C I’) 1 a-- U. U. -l F- C U. 5 43 C U C lU. 0. C 1.1 43 3 C U U. U. C II 2 - ... 11 C 1)
— ~3 43U.- . .- . -.- -OUIO,- - . = 3 4 3 4 1140 3 U . IUU.. 4 34 43 C 5~~~ 4 U I U . UI C ’
— 0 05 1 4 11 UI O F- U I I- 0 — C 00 0 II U = = 8. C 0 0 U U. 39 = -I~~I)I,) IF-U I I SL 3 IC 1 3U CL) F - F -U I Cl U . . C UF-LI 1 1 4 4 I 4) 4) 1/1 14- UIC C F . C)

34 34 I C CC I O OZ . 2 I . - - . 0410 F- U. — U. — CI C -. 34 .3 UI C_I -1 F -U I .14 1 43
‘4 C 5 0 . 1 4 0 .0 5 0 . 4 C) U 4 3 2 9 II 0 0 = F- F- (3 F- C C U.S F- 43 II U I- U . CL)
‘4 0 0 — 3 0 0 0 U . U I 5 C l-l I -- 0 0.0 U -.U IU 4 0 0 0 C C I— . 3 .. 4 9 3 4 -.0.
3’ 4) = .4) — C U U — U — C U. 0 a- F- U -I I C U. 4 14) F. C U CLI —1 4110.3 0 0 0— .~~~.l -. U U I 3 C I a - C .0 4-. . U I -- F- IC F OU . 1 4 1 U.~~~I (3 34 50 0 U . - - 0 5 O F - I 110. Ii 0 - l 5 4 L I 1 .10
F- U. U. 510. F- U C UI 4_I 0 49 UI.I C UI — 31. 141 C C S It) U. LI C .9 C

-~ 49 U . 3 ~~~2 4 — a - U . I 101 C C C. -.49 14 C Ia -— C - - I C) — 3 U . C0 41... UI UI C 0 C U. — - U I’ — -.~~ 4.1 II S
I 4 3 4 4) 4 3 4 1 0 UI C Ii 0 3 C L) ~~C —

C U . U I C U C C U U . U I 5 3~~~~ 3 U . CS ,~ -“— 101 — 1.1 49 UI UI C a- - .49 I- — — 49
S 5 1_I-- 0 313
— C 0.01
— U. ..C

I-.
3’

U93
I I
4 ’0

CL-
II
C

N

N

.41 1-.
3—.
I
CI)

0 0 3 0 0 0 33 3 U) 3 3 3 3 0 3 3 3 0 0 0 3 0 00 03 03 03 00 0 0 3 4 3 3 0 00 0 3 3 30 0 9 9 0 3 00 . l S 0 U) 9 . L - t 4 3 S I3 4 1 ’ 4 3 S I O S I 9 S I 9~~-, 3 4 1 9 . 4 / I 0 S IQ 5 l 3 S I 3 U) 0 S I 0 S I 0 ,n 0 4 / 43 S I 0 U) 0 S I 3 . L ’3 d ’ O S I 0 S I— 9 ’ 4 ’ 4 4 9 4 9 y , 3 5 3 33~~~~~~~.’4 ’ 4 C 4 5 S s 4 / 4 S I . 7 49 4 9 , 4 9 3’)~~33 I~~~~~~’4 5 4 4 5 - C S S U) J 5 4 9 S’4 t - 4 9 4 9 3 5 3 5 0 3~~~~~

1)41
L1’4 .~j .3
8. .) C
413 III II.
U I 49 3’ 3s s t— 3 1 9 -’ — ‘4 4-’ C C ’ 0- 0
ai .3 45 45 145- IS 15 0 .2 5 ‘5 0 0 .3 0 0* 0 0-
.14 1-. .9 49 -1) 14 .11 49 5 4101 -~ 5 ~~~~~ 49 .11

1--- ~~~~~--.—-—-~~~~~~~- --~~~~~ ~~~ . -

151

C .. .0 F-
U. - F-
= 1*1 0 F-
F - U U. 0

C CI
C UI

IS U -- UI F.— — IS --C C
II C 44 - 1.. =5 ‘ ‘ U. F-
UI 4 .5 UC
= • U U I U I CI
O C 1-’) 1-41 41= CIF - U I 1 1 U .9 F-F - UI
CI C U . S UI U
I-1 0 F- F -C I - - 3
I — 4 1.1 SIS C
C 1/) F- UII 0 4 9 U.
C 1-0 41 C CC SF-
0. ICC UI U .S CI 43

2 11. 114 F- 10. 4 3 1* C
0 - — 0 IF U. El -.. U.CI C
C C O F- C — F- UI II C
C C - F- 10) 41 = U.

Cl i 4 43 C U I4 1 U.U. 0.
IC CC 151 0~~ C U - 0 0
C U. — ‘45 4) 4 1 -- -- C 4 9 4 4 U. 0

-- II U .S C a- II — IS C C44 CU UI
UI 00. 0 0~~~ LII UI U. US 0. =-.41 U. 41 C — UI LII UI a- — U 20 F-

- U. 0. C U. 5 Ia- -. 5 C --0 -- C C I C — -.
F- C 44 101 11. 4) SILl C.) 10. 10. ‘ IS 5 9 UI UI
I-I ll . F-. F-0 C C l.. 1 43 --0 41U. CC C UI 41

4/- - -C II — CI .1 44 U. — — -- I-. = — C = 41 F-C U. C
I F - S. - I -.1 101 41 I F- C C L C U.I< I F - F - 41 00. - - C UI

— — UI C Ci U C C UI 10. 0 1.. 9 C — I U 010. U.
Z U I U I C U I 3 UI OC (3 0- 0 CCIII C 413 4 3 4 9 U.
0 4 1 5 U. CO 5 0. “ .205 U = C) U. = CC 5 UI 5 - -

U U. UI F-- C - UI U LI UI U ...1II. C U . IC C = IC IS
U. F-U . 0 UI 5 U C F -CU . 43 4 3 0 W F- 410 C — = UI U. U. 0
(3 5 — C F l) 10. 0 40 0 C C ~~-. UI U . OC U C — — C . 41) -
C — F-IC “ . 0 F- 41 U. U. U. C IC UI IC 49 U. C -~ U. U CI /1 0 = U C)
U. 0 .-. U. 4) C IIIS C IS U IL . . -- CI L . .C C I CU I a- F - II UU U. C

0. C --C = -- = 0 5 4 1 -~ U. C — U UI F- U 0 4 1 U. 10) 3 —CU. — ‘4 U — - U. U 904 0.. U U. IL. I... U. . 4/) = U. 43 — F- C
0 4 4 1 0 4 3 . 1 F -F—. 2 04- C 2 1.. UI 9 C U. 0 C C UI C U. F-I. IC — 0.
U.S U. 05 4 4 U .S 0 - - 00 . I_I U. 4) C 1 1 4 (3> 0 .4 9 UI = UI 4-I I-U. -- C CI
0 4 4 3 U I UC LII 0.UI .-, ‘4 4) 1 1 C I O U I F - U. C F-C O F- C I C F -~~~ 4/) 5 U.
‘-I - U. C U. C F -U. 8 .4 / -- C C I-C I-I -4 -C --F -U - C 0~ — F. 44 CI - U.
U. U.- 4 3 W 44 0 4 9 U U. 0~~ ‘4 U. 4 - U. C UI UI U II SU 4/) C U . -II 43 U. 0 0

114= 0. F -F- 0 0 U. — U. UI = CU . S S 521 UI 0 U. F- S F- L I U UI0 C U F- 3I 14) = SI C U C —U I = 4 3 0 ‘4’ F-C I-. U. U C U. F- 0 Ci U.
F -I~. 02 I 41 - F- C O 5 a - O S F -C 4) 4 1 1 - 4 UI F -S 08 . U 11 5 C U. U

‘—I — UI C 41 CII CI CI 4 U C UI 0 F- 114 F- U U. UI C = = U C — UI U. 11 41 49
4 9 4 1 4 - CO 14)4 W I C -- C a - a - U. U. — U 5 0 UI C IU F. 2 F- 142 I U. 43
U . U I U . a -C a- 4)14 — IS 0 — C C (1) F- C F- F- I CC C U . CI 5 0 U. U.
U. 0 0 F - C I 0 . C U. U. -.F- l~I 3 C CS F -= C 3 0 C C F- =4 1 4 9 1 1 4 00 C.0 C C 201 C S . I S1 3 CI S F - C I 0 C I F- 4 F - U I C U. I S(~CU. (3 1044143 140 CX C C C C- — =3 — 4)0 — S U C F- LIZ 5 44 U. 41
4 4 321 4 C C C I_I CO. C -. -U U. C U 0131.. — a- 1 0 4 4 1 UI F- U. C
C OO - I CC CC CC UI UI 0. 0 I SF- C (1. 43 4 0 . C CU C I SI C F- 0. F -0 C
F -4) 00 . UI C C UI 41 a - C C44 4 1 2C C C C C CU . F- I -U C L.. I-I S 0 3 C UI— U. U. — F- U . C U . U.— . 0 C C C C I C II) C- C S F -C U . I C 4 9 4 - C F- II = 3 C 1~1

43 41 U. C 0. OF- — C CC ICS 4 C O CW CC C U . 411.4 U U. U. U. F-
-- C -.UI C U. 0 I 0 9 CI C U. 1 9 C 0 0 U. U C a- = F- CI U. II 144 C U. = U. C)
IS F- UI IS (32 a- — U 54 4 a- IC CO U II 0. 1.. 1 3 U 4 .- I~~~ C C C C F- S C U .

4 2 UII.. 03 CI I51.I 32 C I U U . 4 9 0 I F F - Os 0 U . 0 F- C O C
— F -C CI U. C UI CI -.1 CI CI -~~ I I_I C U = CI I U U 0 F- U S C = = 0 3

F - 0 F. — 2 2 UI 4 1 4 / 9114 F - WC C IC F - C 3 4 1 5 0 3 U . 0 0 F. U C
Z U .U IC C C I 415 4 9 4 4 CI OU F -C C C C U .- . 3C C U CO U . I I — 41) II

Y 0 UI 414 U. S - - C 1.1 U. C UI — C U. 43 C IC — 0 4-C UI C 4-C 0. — = S = C -.
C 1/I C C C C U W I) U. 4 34 1 0 . 4 1 4 4 1 4 3 0 W 41 - IF-C) -I 4 10 1)1 I U - 1 U I I C

-. 514 41. C L.) CI US = 1-) -. C.) 44 a- U. UI U. U. 5 0 . 1* 2 4 9 0 . UI — C C C U. — C = 4.)
— 0 11 00 UI U 0 UI F- UI — UI IF. UI — UI = U. 41 U. 3 C 0 0 I C I—. C ~ 3 . 1 1 4 . F- C
— 4) 1.1 1.14)549 4 3 5 5 1 1 5= — = F- 54)1-I L. U. = 0. U. 5311. 0. F - C F- a- CC ~~~t~1 — - --. 0 . 14 CI 140. 0. F. 41 F -C I C U .1 / C. . U IU . F- ,0 -* CCN N C

U. 0.1*1 F- — = 4 1 W 0 U F - a - C 41 UI — -. a- U I -I. 01- 4/ 14-
IS- U U. U. I U 0.41 I U. C 4 C CI 43 43 U. Ii 43 41. CI ~. C 1/) 314 U 1-1)
1-- 43 S F-0 C 410. U. U. UI 44 F. 3. *4 U. UI 21-1 U. C U. U. U. .-I II. = 1 1 = C U .
3’ O F- OQ C I C C . . OU IIC I .CI 4 1 3 Z.. 49 U I . 4 9 3lJ . - . 4-U . _ I . .F - 4 4 1.1-
— UI C U. U. a- - . — — UI 2 ,-C UI - - 5 4) Ci) 3
I 50 . 0 Ii C 43 4 3 3 5 14.) 3 4 13 .0 . 1-C U .
F -U, . I U .Q CU . U . CU.LI3 5 0 0 . 0 W 4- lU. C 1i1. 1-~14) 5 4 1 . I C I UIC W I _ I C UI — I, 49 U.S U. — C) ——3 -I

• I C)
9 LII— --. 49

S

4/—

3’

IIS F-
U

C O
O F
*4 -9

3 41.4
1.0)

44
I’)
.

(13
C 44
U.)..
0 — -

C 1/)
• 0 0 0 0 0 3 0 0 0 30 0 0 0 0 05 0 0 0 0 0 0 0 0 9 0 0 3 3 0 0 0 0 3 0 3 3 3 0 0 0 3 0 3 03 00 0 0 09 0 4 1 0 4 1 0 4 1 3 4 5 0 4 1 0 4 1 0 4 1 0 4 1 0 4 1 3 4 1 0 4 1 3 4 1 0 4 1 3 0 0 4 1 3 4 1 0 4” 0 4 1 0 4 1 0,rIO 4I0 3 ’ 0 4 1 (13(1 -3 . /C

— I~4 N - 4 5 4 5 0 - 0- 3(1 LA 490 4/-. CI-. CC 31- 9109.— — 41 ~-l 4 4 4 4 0- 0- 3) IA .0 .0 1— I-- 49 49 91 3’ 0 0 — - 41 N 14-I 15 0- IA L4~5 4 9 0F II O 4 9 4 9 4 9 4 9 5 4 9 4 9 4 9 . C C C C C C C 9 1 S 9 1 3’ 9 1 3’ 9 1 3’ . 4 / I 3’ 3 ’ 3 ’ 3 ’ 3 ’ 3 ’ 3 ’ 9 1 9 1 3’ 9 1 0 0 3 0 3 0 3 0 0 0 3 3 3’ O t — 3 3
N N.N N 1 5 JN.N

41 1-I) - -.41 - -S —41.41 41) .1.
C
I .141LIZ 415 0 49 1-- 1— 49 3’ 3’ 0 3 9 — C

1143 5 0- 0- 0- 0- 0- 0- 0- ~tS Cl) 0- I’ C 3’ 01434 - . 49 .0 311 49 -IL 49 49 41 49 .11 .145 o) Cd =

152

S
LII
=F-

UI
= II0 44

F- UI
UI CI -. C
I 44 0
*4 111 114 F-
F - = C 41

F- - - 0 —
C) C -S C I
C C . U. 3 4.) — C
4-4 U I U I = 43 2 UI C
0 55 F - 3 1.) U. --
S F-0 0 5 5

IS

4 0 -S I- 0 0 --03 IS C UI -- 0 C - -
C CC F- U. Ci U. U C C I~3O U W CI U I - - C CI C C
U. 4 -C U . UI -- S IS 9 U -. C C —- U .S 4 1 4 9 144 0 C IS -. C C C
I “ .11 CI C 10144 .4 U. 0 U. IC UI I.
U I4 4 ’ I L . -- 4 44 1 --XCI II - 41 44 8 . 4 1
F -— UI C IS UI IS 4 .. I. .~

IS -- U UI 0 U. CUI CU. 0141 UI F- F. C 0. II.
4-I F -3 U. UI 0= UI 9 0 U. UI -- C I- U. 44 CO

49 C I ZU C C IJF -C11.Z - C UI IS UI C II F- UI
I UI U. U. 0. 0. 0. 11. 111 — - -U. C UI C 0 -- — F- UI— S CO U 0 0 0 - . 0 . F- - 0 U. -.UI C C UI I C IU .

350.14 UI F- C — I C F- U . 0 SC UI 0 I— UI C 0U3I . U I I U .ICO C 114 1-4 4-C -I 00. 5 U -- S C C C) O
0. 4)491.) C U . CF -0 0 . 2 4 C C U . . 4-0 2 0 F- - — UI U.-. 0. U. U.

U. I C 4 UI - C C 0 - 11) 0. C 3 CU. UI -. 0 Oh CCi C LII 8.F C a- U. 14) 5 4) 14 43 U. 113 - C IC 1 -C C 0. UI5 U
C F- U . 04) CI U.C4) -= 4) U . 4 1 4 3 U I U .C F- 0 8. UUI C U.CI)
a- C3 S F -4) 0 C C O F .U - U U .O U 0 -01.) C U (3 0.43 0 =4 3 4 3 3 . W U I C C 1.14-I F- C U I C.?0 -. 3 FIF - 1 4-) 5 0 F - ” .

I UI 04-C C U . UI 4-0441 C C 14-1~~~ — 4) 4) UI UI U. IC — 14(4) - - = -S
2 5 CC U. UI 0 . S C I 43 U O I C 45 U I0 I 1* . I C I.. 4 1 1 1 4 4 3 5 F-F-34) U. UI C UI U. 44 01* II — CI) C U CC II • UI C
24 1 4 - CF -CIF- CI 4-I ’IUI 1 C U W - ... 11) 4-1)344 I UI 3 .U . 44 4 3U I0.41) C O 1 1 4 1 1* 1 0 4) 1 3 UI 5 0 5 4 4 43 UI U. F-U . C I U .’4 F- UI 5
4 5 1 1* 4 U. C) — C 4 1 (3 2 5 1 C U . W 0 0 5 -~~~0 C 5 0. U. 5 1 4 1 4 . 0 C

LII 4 4 1 3 U F- UI = CF-I.) 0 UI 4-C 13 14) F- 4 4 U I 3 U. 4 14 U I a- 4 4 F -0
2 U IU I U.4-C a- U. 11C433 1 F-U.1IIF -a- 0 4) - U. 3 C U O O F - C~?
U I F- C C C U . 4. F- U. U .S U. C -- 3.0Cl) 4-C 0 - - U. (3 Ca- U. — F- 0.00. —. CI -

0 - C F- I_I U .S UI C F- C U . 141 UI F- 41 F- UI 0 1 F- I~I U. I CI U.4 3 U .~~~< CI — - C 0.2 a- UI C) 1012 I.-. 4 4 - C C — Cl C S U. (3 U.S U. I
UI QU . I C I>. -2 UI UI - C 415 .4 .5 C .-ll) U. 31 F. Ci) U. III U.S C C U UI
0100 UIUI CC IU IC F UI 0 U I O 1 . I CC C OI SU . CF -C -.. - U .C . - U IO a - OF-
IC lII 1.. F -F- C O 1 1 5 1 4- . I 0 S WO Q . UI1II 414 U. - 410U.F-0 5~~~U. I I C 41 F- U. I F- F-C I—I C F- U. -= UI — C UI C C 0. U. UI 2 4) (3 44 14 3 0 .0
C CII 44 UI CI F.~~ F- 0 1.1 5 F - F- L I OC -U. UI C US -- C U IC 0 C C

4 3 4 4 1 3 I 4 4 3 4 4 4 UI C C 114 U U I U I U . I = CC I CU CI) CC 0 U SC C C
3 C 4 1 0 4 3 4 1 1.. F- 0 U . F - U . 4 9 4 - 4F -O U .F - C U. C C I C F- 00.U. CC

.44.- C S U. 30 U C UI 0 sCIS CL.) 0 UI I.. 3 C I 4) 9 3 — F- U. — F-a - C U.
3 0 U. F- S U. UI 1 -—C (41 C I— 4-I F- -u 4-C (‘I U F- UI 5 -- UI 5 41 UI C a-

C 3 0U . U C F-C O C - .L I C I LII 0 C I)U C IF - U .U .0- C .4 3 44/I F- F- ..UIC”...I0 UIO
SO C LI. F -C1) UI U F- 4 9 2 4 1 W 4-C l.I UI U. CS 9 .lC)UI411/) U. S.... UI U 13 UI C.) C a-
C J C W I C 4-C 0 . 4 1* 4 14 1 UI F - U IC U . U I U I U I F 4 9 1 4 11 C C IC 0 ~~~ a-~~~~~~~ U.U I 0 5
49 1.. U. C C 0 . U . 1 04 1 — 1 0CL.IUI 5 U U . U I — CO C - F- -C II UI
LII C UI 0. F- IC CI C C 11 11)19 5 U. 4)0.58. U.S U. 0 4 4 1 F-l.) UI 41)4 F - F- C) F- — C C
a-F -411 C — 0 F- 3 C C III = UI 0 4--I C C O U . U I II U a- U. 0.F. CI C C U . C 44 4 4 I0 344 / I . . 4 3 5 U.F - 45 0 . 4 4 1 5 F- C U . L I F - U F -C 5 0 4 4 43 _ l C C U. l.IUIUI S --

I’ 4 3 4 1 1 4) CC I 0 U 0.—’ 41) CL I I 4) •~ U. UI 4) 41) F- 0 9 5 1* UI C F. S CC U. 0. (3
-- IL. 1 1 W CC 0 I 4 — F -U I CI U. a - C U . U. UI 41 C U . — UI C 4) 3 540. C U . CI U. C- - S. U . C 3 4 4) 4 S C C* 3 U . 43 U. U I C F- U4 1 1 - CC I = U I F- a - ,— 4 3 0 0 0U I U 3—

— 0 5 4 4 CC 0. 3 1 0 S C IU .O UI F - 0 . C 4 3 3 4 0 4 C C U 0) 4 1 5 C~L U . U I UC C
1L1 F-C I UI 0 4 1 C I . IU .4 1 C) C U. F-0 U I U 3 U . Q I - .C CZ C I 4 1 4 3 - . - .U .U . 41 4 3 0 .
U .S — I-I 5 0 . U. — I-I U. F- .-~ U. UI UI C 25 0 . UI UI U F - C U . a- -I -- U ...- UI 3 U. 0 .14 F- C C’I

‘4 141 0 11)1 U. U. U I Z C I 0. 3 4-C U.14 0 U. (3 0 = UIIC 0. U U . UU I I U .U .
C I C C F - .0. LI. U .CF. U . 4 0 . C U U . F- . 4 U .U . 0 .U IU CU I0 . U .U IU . U I C F -C I U I 49 (-. O S 4 / l U .

3’ CI.IC I.I C .. UI L14 C U IC U I. .UI U.4 -) U . U I S l~~~~. U I. C I_ C CII CU . U 34F.3CCICC ...3
— 0.8. 1.. 4-. .4 UI --5 U. II) C U. S W 141 0.1-C

I U. 0.1-) C U . Ci 4 3 0 . 1 3 C O U U .C I -. 5 4 / 1 50 U —
F- 11.U.UIII1 CU. l - .UI C l-l U. C CU . 0U . F- U . L UUO U .4 1
14) .U IU I .. 49 U .U I —C U I. C UI C C- 49
3 0 0 -
I C C U . C 3

49 U.S U.14
—~~~ .U I ~~~~~S

C—
4--
05

U
CO
0 1

4 1 —
1.
CI
5 —

44
III

N
C— ,
U.)-
0 .-.
I
Ci)

3 00 0 00 9 0 0 3 0 0 3 3 90 9 0 3 03 33 0 0 0 00 0 00 0 0 - 3 0 0 3 9 4 3 33 3 3 0 3 3 3 0 3 9 3 0
0 0 4 1 0 4 10 4 1 O 4 1 0 4 1 0 I A 3 I’O I ’O I ’9 I’O 3) 3 4 1 9 4 1 0 4 1 0 4104103)03)03)04133)0 48 3 .f13 4 1 0 3) 3 3)
— 4 9 4 9 3’ 0’00 — N “4 - 4 5 4 4 0 - 5 4 1 4 1 0 4 9 N-~~-. 4 9 4 9 9 1 9 100 N . 4 1 4 4 4 4 0- 0 - I A irS 4 9 . 0 — ‘4 4 9 4 9 3’ 31 3 0~~~~~~ 41 ‘4 4 5 4 5
I l 00 .3 43 NI4NISI INNNNl)J Ci.4 ’. L N N N N 1) I41.N N N 4 5 4 5 4 4 4 5 4 5 4 5 1 4 544
I— N N N N N N N N 4 L N ,’ 4 N N 4 1 N N N I 4 1 N N N N N I N N N N I 4 1 I N N N 4 1 N I’ 4 N NN N N N N N~~C i N N N .~II.N0) 4 1
01 -
41141
‘IC413
UI N - ‘4 -“ 4-’ 0- .r4 3)5 3) .0
4.334 .41 3) 41 31 .3’ LA .4 14) 5 .4) .11-I.43 1- -C 14 49 31 49 49 3) 1 4 .11 49 49

153

S
U ---. C CI UI

- 0 9 1
S C UI

U. C CI F-
S U. —
0 U. I C)

1.. C
41 II .4 UI
UI 50. C

U. 31 C
C C CF - C --
0 0 -- CI S
UI U C UI4-) C C
F- 4-. C U. 0 4-)
C 0 -. C C44 U.
4-4 — •- -- C 444 - UI
UI I F- IS IS UI U.S 1 =
C = 4/) U. U. a- UI U. U. -- F-
0 C 4 1 ” . U . U. --0 CC I F-IS --
C a- UI ~~ S — -- 5 9 -- 41 — 0 IS

= UI I LI. U. CI U. C C 44 - UI F- U.
0’ ~ 1 = 5 — --0 CO 4~~~~~~ 41 UI 41 F- UI LII
I C 0 F - F -C U I U. UI IF- - 41UI U. C C U. S

4-I U. U C U UI F- UI 1 49 5 1.1 II. U. -.1..
CI C 5 1 3 4 3 0 . 011. C S C 49 -.11. Os -. 0 0 C 0

U -.5 0 - 14) - CI U. U. C 4 IS 43 - U 5 U. “.1-1 UI UI
UI 0. UI U = UI = .~~~~~U.C C 0. 411* .‘U.0 C C U. F- C U

U. = 41 F-C U . U C U UI F -415 C -.~ C U . 0 14) 0 U. U. C 00 .
Ci F- U. 3C C 0 0 . 4 0 C O C = X L.. - C.*. 43 0 - UI 4) -
IC U. U 4 UI UI 1.1 43 U 4 1.4 U. 0 9 - (3F- U. 0 5 CI UI =
0. 11. II C I SW U . -- C IU . C C I C - O F - C -. S C U 2 4) 0 CLI

U C CI U. U. CU. .) U. F -U I CI 414) - . 4 4 3 0 UI U. 43 C 3
C UI 93 C - U. UI ~~~~~ U. U. U. CI .00 F -C I 43 U. C UI III UI UI
= C CU. U.S 49 U 4 - I C C U. 0 ~~ F-UI UI a -C U . C 14 UI = U- 0 C.1 U. 0 4 UI 05 0 . C C F -UI 0 U -- C 4105 U. U. C F- U.
C ‘44) 4 1 0 W (3 14 C C) I C OW 4-) U U. CI 5 0 .50 CI 11) 1-
0 U 0. -- C C F -UI .-F- - -F- S - C CI—’ 41 - U. CI C 4 9 4 4 C’) U .S

• UI U 0 ‘4 UI C —IC IC UI 4-C UI IS 4) 4) C U. U. 4-I U. C 3 C = U. 43 C 41 0
F F- U. U. 549 UI UI C C 1.1 1 U. CI 3 U. U. 0 U UI UI C U Ci = C Ii

U SI U F- U ICZ C O C OI U IF - U I U . C l .) 0 (3 U I C U . F- U .F .
3 C C 0 .43 F- 4) 4 1 1 — I C F- C 11. F- C CU. 4 U I UI CC F- 4) 4 - C
C 414 C UI O F - C F- U CU. C = UI 4) 11) U. UI 4 14 3 F- - -III .1 UI U.
I-. .- Ca -C U III — U U. 3 U. U .S 10= 0= C U . I U. 043 C CIS - CC
41 UI — C C 1 4= 5 F- = 1 4 SF - C U . U.S C UI UI U. U. UI 1 44 -
CC I 4 3 5 0 4 1 4 U. -.F -F - U I F -O C C F - S C F- =4 3 0 F- U .S C IC
UI C 501.355 — ‘l.. II) = F- CI 3 CI F- F - C C U. IS O W I CI F- UI 0 U. U.
I C CC F- ~~ 3 UI 1)3 — .30 31 UI C SW 4114 U. - CI = I F. =

C C..) S C. -“4)0 C 0 4 3 I 3 U . U I U . F-S UI C C X C I.) SF. SUI 4-IF-
C S U. U .S 4 34 4 - SF - C U C C U S S U. U. I CI F- 0. F - OR UI UI II) UI I 44
C C I a - C W Z. 4 . 41541 .. 5 0 . 44 1 1 .4 1 3 4) U 3 0 X U . C I C C 5 = 4 1 5
C ’.- 055441 CIII C C 5 4 5 0 . I F - C U U .S C~~~~~~~ UI 5 F- 3 0 F-O 0
U.F- -IF-CC X C S F- S O F -U I — C C C U . 113 UI UI4 - . C C 0 - 4 F- 3U .
0.0 9 1 1 LIII 9 504 1.4 U. C a - S F -C a- II ~ U. = UI 1-) 0 43 U. U. F- C 3 1..

4 0 U C 4 4 I S U . 9 C O L IC 4-. 0.000 C II 1 4 4U . F -SC UI CS U 0 0 . 4 41UI U C
1 4 1 U IS F- 0 C 4114) 0 . II 0 I I I F - C~~~ O W U.4 C O S C O U . E — I F - U. U.F-

UI 4 1 1 44 1 CI I = 4 5 54 1 I = 4) 0 OF - 5 3 0S U. U. CC 11.14 I C
U. 41 US— F-UI C U IC F- 4) 0 C IC I 4) 3 04 F- U. C LII I.. II UI F-C II C C C

CC 4 9 0 . 5 1 0U .F .C C CC 0 . ’.’O C Cl) 09 UI CI I I 0 .C C I I 440 F - I C
0 C U. S 11.4 C U. 0 CC UI CC 1 4 54 U. U. II 5 S C ‘.. O F- U I 13 43~~~ UI 1. 49 -
II) UI Cl) 04-) CIC 4 1 0 CU . CI U.F-C) U. 4/10 05 . .F -W I l 413 4 IS 4 3 4 1 0 5
-. = UI -- U. — U. a- LII UI CI. LII 50.1.1CC 4 = 1 34 4 0 3 0 2 (4) 0 I U
— F- — UI X CIII.... U. = 0. 1.1 W 3 40 0 I 15 4-4 + a -F - C C IC U U 0 5 4) C C C
— F- I S C O S F -C 4) 1 U. U 5 0 . 0 . 500 . 0 . F-C 54 UI 4) — I 0 ..- a - C 4 a- C C

0. 1 I -~ 4 0 F - C IC 0 .C I. l . 1 U I F- C C U . CCCI4 ISJC I O C I U. OC I CU
UI 0 U F- a-a. C I U I -I -- a - U. 0.1.. 0 4 4 4 / a -U . U~~— U I 5U.U.~~~-I LI.

4-.- 411 U.C UI OIA Ci 011.4) CU. CI 5 4 1U .0 4 / I I C I 0 CII U.
1- 14 U. * 4 4 4 I.. — UI U. U. CI.I UI CI. . I.. U. 0 .0 . = II = C U . C C F . 11.0. U . SF - -I L..
3’ U I IC .CI 4 1 0 1 .- 49 U I — C U . . 4 U .C~~~~~~ U . F - 4 4 U .C U C . - .C U IU . C l - IC UI
— — -I . U . S C -I -- C CI 410 0.8. 0. UI

I 0 () 00 49 013 0 SC U . U. 11.13 34 0.13
F- 50.114 5430 .0 . C U . S C I SU IU . U .U IU .U .lU. 5 U .U IU I
U 1.IUIC U. — U. C U. — 41 . U IU I — U IU I. 49 UI UI — 4 9
0
49

4/..
3’

145 F-
U

C O
3 1

II-
I.
CI
5 —

44
N

N
41I~S

0 0.1
I

CI
0 0 3 0 03 90 04 3 90 0 30 0 09 0 0 9 0 0 0 3 0 0 3 0 0 00 0 3 0 0 0 0 9 0 0 33 0 9 3 0 3 0 9 0 0

0 0 3)0 3) 0 4) 0 4) 0 4) 0 4 1 0 4 1 0 4 1 0 3) 0 4) 0 4) 0 4 1 3 3) 0 I A 0 . A 0 4 1 O 4 1 0 4) 0 4)0 4 1 3 4 1 0 4 1 9 4 1 0 4 1 3 4)O . A
— 0- 0- LA LAO IC ~~~~~ 4949 N N 4 4 4 4 0 -5 3) 4 1 0 0 4/- I.- 49 49 3’ 9 1 0 0 . 11-4 ‘4 44145 0- 0 - 3) 4 S O O I . . .l-- 49 4 9 3 1 3 1
I I 14514) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 1) 4 4 0- 0- 0- 0- 0- 5 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- Ill .44 41 -45 4111) 1)4) 41 1) 41 II) 41.4)3) .l~5 3) .1’ .1) .1)
d U I N N N N N N NN N N 4 1 NN N N N N N’ 4 ’ 4 N N NN N N N ” I I N N N N N N N N N N N N NN N N N N - ’ 4N) I N NN
0) 4 1
.4 -
41 ‘4
4-.0
413
U I — 49 .0 3’ 0 0 I — 31~~4 N .4) 45 0-
11443 41- 41- 4) II 49 49 49 49 41 .0 49 .3 0 4935- CII CC CII 49 49 14 .0 U. 1 4 4 9 U. 49 1) 49

154

U.

0
F-
II)

UI

=F - - --
F-

3 U. UI

C C --
0 . S

O C 0 3
I— C U.

UIU. Ii U. U. 41.. Ci
U I . 5 41 41 C- C
5.— 3 U U 43IS

I’ 0 C C CN F-
UI44 U. 0. U. UI

*4 1 CI II U.U. C-- . U . C I S
C I. ’ U. -- UI -- UIU

0 Id 4-1 0 U. U. IS = U. 41
— 0 . 54 1 - C UI = U. 3 --

U . 4 14 1 I.. U. U. U. I~ IS 0 U.
— O- ~ F - C C -- U. C C UI UI - IC

I U IZ I U. 5 111 C U. U .5 3 U . F- 0
4 3 4 9 5 W -- U 43 05 U. 0 U UI 0 C -- U U
C C F- C ‘4 0 . -.UI C I.. U. UI 4-I = 5 U. 0 C -.

UI LII 0. C UI C U 0 5 U. U F- 0 — S C Cl
C) 41....543 U. UI U. U. S UI UI LII LI. C II ~~‘ F- C S
C . UII4) C C I C - UIU. 410 - 0 . U I U S C I U 3

- . a. 4— (4) - C U 0 C L.. ~~U O S - - U. I O U . U C - UI
— F -F-~~ U. UI 0 4) .. 0 - ‘4 U . 4)0 W 0.1)0 - ~l UI 4-
4 4 1 0 C — 11) 0 U = UI U. 0 C CI . 34)5 ~~ U U
54 1 U C -- 4~~~~C 4--I 44 U. 4) U - C UI UI C 0 .1 44) 2 U 43 4 3 - -

414 41 5 U. CO 49 U. U 4 1 1 0 0 Cl US 50.
44113 5 U. C O W 118 UI UI 4 0 1 . 40. U. 5 1 UI — C 0 F -1
4) 1 3 1 4W C Q~~~~~.I 43 U. U -. U 0~~~~~~~ U. F- U. UI U I 4) II) 1 1
SCS I — F -I F-S 0 = U. F- U I CF - S U I 0=0 . C 1 4 4 9 SF-
U. 0*4 . 0 5 I.I U. 3 4) F-~~ -- ~.. C U 00. F-OF-~~ 4 41UI UI II . -
43 0 4 11 ~-. 2 0 . UI C) 0. 4 4 4 1 C 50.1.113 U U >~ 0. C U . -- Cl
CU. = C 0 —C IF - 0-- U I O U I 0 4..~C IF -Q . 0 0.U . 0 - U I4 -) U.I U.
U. UI IC U. C IC 1-’ 41C3 . 11) 49 4-4 0 4- 4 10 4 1 1 3 F- U 49 CC IC)
0 . 5 5 0. C 2(31.3 UI 1— C F -U C F -C) UI UI C — U.— . C F- C’) U. U. 1W Cl
1.1 U. 5- - C 0 C U S - - S S . U . 4-C 0. 0 - 4 5 U C C - - C I U. 4-C CI C U. SF- U.
C S LII C I-IOU. C 40 IS U. 1.14--I UI S O W U. 4 3 I S S U U. - UI OF-

1 4-. U.I C 4 -0 5 * 0 0 . L I IU .C F - 4-.. 0 3 C 5 0 L I IC C U .Z ...1 4 3 5 24 1 3
IC UI 4-a 11441 3 U .L.4UI * U. C U. 43 U. -U. C U. 0.,s 141-I -. C S
F -4 45 I— = UI U I = F- 4) 0 4 9 -*0 U C 15 U. 0 =4 3 -5 U> C C C I S U 0.
4 4 4 U . F -U I CIL C U . F - 4) U .l . I U . I L O LI UI 3 0 -U . F -c ,.-I.IU.U.U.IU. CU. 1 4 5 0
0 4 1 — 1 1 . U 4-C UI F- 0 4-4 4-I OU . S 4-C — 1 1 3 F- C I SF - C U . — U. = C 4 1 -U . 0 0 .- - 2

49 LII .4 0. W C I WC U I O I F- 4 -IF- U. F- 4 - C U I F - 0 C 5 . 0 F - F - U I CF - C F -U I IS 0
U. I.—5 OU I F - S Z F - —1.I U.CI C 0 1 - 5 0 - 4 7 —1.4- U -41 ICI.I O F -1.171 UI
149 IS I I F -4-. 411-I CC) F -1.11 U. 4--I —4 UI C U 41.I F-UI 0. F - F - S U 4415 4) Ci U US F-
4 9 5 4 1 1 1 1 .4 U .4W .45 C 4-5 - 4 14 0 43 UI UI U I.. = IC - OX CI C 5 I 4 3 C 0 * 4 W 14
1-1414* 0 .0 CC. U. 43 L13 UI UI LII 0 I-~~0. C 4-5 11104.141W 4.15 C U . -. CI C F- C F- F- 0
Cil .-..Z IC I .1 CU . 0.. 5 - I .4 4 II C U . a- — S U S U C SF- 0 U. F- 1.1 F- C
1/4 I 14 5 -4. 1—. I... S ~~ U. 49 CII - - C 1.1 13 1.3 U. 0- UI S W 43 0 4 9 4 9 U. 1.17 49 C 1.1 3 41 ~~~41 F-

E 3551.1 44F - . 4C U Ia - O Z IU IC I C 5 O OU Ia - 5 9 54 0 3U I4 1 I_ I 0 .U I F- U IC — C 1.’)
43 a- C 415 15 31 U IC F - O F- U S II ILI F. 3 C U. II _ 4) F- U 4)5 CI 13UI F- U I CU C
LI) 0. .0 9 I U. 13)5 — LI. U. F - I C U 11)5 11 .41.0145 1 4 58 .0 U 4-. I UI
-. IC UI F-lIl 00 0.8. 1.4-UI UI 181 41 4 II) 11.0.4) U. UI UI — U. U. 4 14) CU C C 13 1.’) UI --

F- O4 4)0. 14 U I4 F .U . 4 /)S 4 0 34 4.4 U I= _ I _14155 . I J 5 ...F-L.7 0 I C 1 41 U
— 5 4 1U 0 0. 55-0.49004044.4) CII F -0 . I CU O C 0C O CC C I C IS U 1- U II-I CUI C .4

U I 4 1 4 1 C 3 (3 4.0 4001413 -4 1.. U. ~-4) . L ISOUIl iU .0 U C IU I C3 O F- 3 5
F- — U. III U. ~~~5 SC Lo U. U.LI F -C 118 CII C C CLI. 44) U. U F- I U. C U. UI F- UI C 4) UI - UI

4/— 18. ‘USC’) IUI 4/) 0 4-4 5111 4-C O 0 . 4 1 41 0 III 4 C O S3 U .1 4 5 F- S F - I. 4- 49
4/- .4U.SC4U. CF -UIU.U.LI.UI 4)SU.U.LI.0U F- l.IU.0.L... . .0SU.U0U.0. F - 4 1 0F -U 4 C C O 13 13
31 .. UII.. CI C.I IC 4 1 UI UIC ..UI—...-.CI .C.-. 41 UI C U cC S 51135 0 .8.— 0. 0— 43 — - - S U .U . F -.- S -IF-U. 49

I 43 U.13 C O U.’.) 34 0U. 1 4 1 1 1 5 0 - - F . 11
0- L~ LI. .11 UI C UI U. = C U. U. CI S C C — C Ii C~7 LI

14 UI U I 4 9 — U . . — C U. 5 , 3 C O U I4 1 S C Z
3 3 a -C F-F-F-C.-
I .00 I C a - I I!)

49 Z Z C . . 4.. C F - F -C C 1
U . U I 0 U .4105 U. F-

5 F-UI2U.l-. C
34 Cl C F-
C U I U I U .F - 0 CI
-.1 F -0 04 9

C C
34 I 0

‘4 Z L.. F- UI

‘4 U .0 O F-
Os C C
.4 43 C

I CI.. —
44F. ‘110 1

U C
03 43 U.
0 1 C F-

UI —
41.4
I.0)
54 4

-C
N

N
C l1’
UI.-
I

41
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

30 30 0 0 000 3
o 04104103)0410 L A O 4) 9 4 1 0 4 1 0 4) O 4 1 0 4 1 O 4 1 3 4 1 0 4 1 0 4 1 0 4 1 0 4 4 0 4 1 0  I A 0 I A 3 4) 0 4 1 0 L ( I O I A OL t C 0 3’
4--
I X  4 9 4 9 0 1 0 4 9 0 0 4 4 9 0 4 9 4 9 1 0 4 0 4 9 4 91 0 1 0 0’ 4~~~~’4’4 ’4 ’4 ’4 ’4 ’4 ’4 ’4~~~~

1. ’4’4 ’4 ’4 ’4 4 9~~~~4 9 4 9 4 9 4 94 9 4 9 4 9 4 9 0 4 9
1
4-I ll)
4-I -
I) II
4-IC
4-C O
U £ 0- 414 14 .0 .0 .3 — ‘4.- 3’
140 49 49 - 49 .3 -0 0- 4) N —
43 F - 1 4  CC 1.~ CC ~I U. 14 1 4 1 4 1 4

U



p 
~~~~~~~~~~~~~~~~~

- — ,.—-.. -____

155

C
S
CC
U. IS
0. 5
0
UI 41
4) C I-.
S I S
3 .0 U
0 F --- CI
Cd) 0 IS 4)

I U. U I- - S
C 41 51.. . 4 1

UI OU. 5 ,...
84) U. C U . 01
0 C -‘ II) U I 5

U. UI U. UI F- F -C UI
C) U. (3 1.1 C U . U
C -. C 4)_ U -.
U. -S 4 3 5 OF- C IS

F- 44 00 UI’) U 0
4 US 1/) 1.1
= C C . F- F-
F- U. --C 544 4 . 5-. F- ISU. 444 IS~~~~I-I U.
41 --41 41 CC C> 4 1 0 C
CI) 14)4 C .5 U. U. C F- - -- C
U. 141 1 ISUI 0.41 I0F - I S 0.
4) 4)0 — F. U. --0 4) U C C —0 -- SC I CC I IS C C UI 44 U.
C 084) 5 U. C 1 114- 4.1) 41 UI C S U
0. UI 0 . C 54 .4) — - I C C -- U 43-. 4 1 U . U I 0 . CCF-51 F-O O IS 41 C
C I CI U1-. O F-S O C 004) — U UI

-- C C F -U. C = U UI 04 U. .0 - C =U. UI C 0 U. C 0 - -U. 4 9 4 10 . 411’) UI 4— 41 4)
I F--- a- C U .F -C 4 4 C S — U I U I U C — 41
UI 05 . 41 . . . C I ZC 43 UI = UI 43 UI I
F - 0 0 F - C 4 C C I C CC U U 5 1 3 4 3 C S UI
II 5U I C W 1> . 0 S C C— F - F- 0 .2 U. C C 41

F- F- UI W C U IU I I 4) 1 4 CI UI 0 U. -- U.
F- C I4) F-C F- C C i a- U I ~ L U I 4 1 C0 U C U.

3 41 53 C C 4) 4 1 U IC 0 I C 0 4 1 I S54 1 .0 F- 0
C UI S U. 0. UI 10 .1594 U. I4 UI . 4 1 UI IS
UI F- 5 1 4 LI. COO LI I 14 W U. CI, 4 43 C U C C I F -UI
F -C C I) -C ” UI 0 USC 5 U. C 4 1C U. 0 0 - U C

• . CI 4 5 0 .44 4 1 5 W 4.CU.0U.UI 40= C U I 4 4 0 0
o C UI UI 14 F-C C 0.0.415 U .. C 11.. F -1.1 F- ~~~~~ C C
IC) U S U. S UI 1’ -O -U. -- 0 UI 0 - = 44- IC F- —

CF -= I U IU I C 11IW IC 4 1 S C = = -- 513 U 0 US 41 1.1
— . 5 F-C .. 4 14 1 1 - - -F - C) I I L I IC C IC F -U I 4 1 U I O 41 0 4 1 4 C C)
— IS CI.) C C II U I U IS O C C S U. F - U . U.UC * 4 5I.. -. U. 5. 0 . 0 . C C 04 40 F -F- 4 -U I III S U. 4 44 9 1 CI U. -— 5114 + 0

41 - S F - C 0 C U1UIC 1F- 41 F - 1 1 1 ~. 4 44 S4 - I C IS 0410. F-4)0
N- S F-CO . 0 C U. a - C C U . S S 4) F -U . 0 CI U CC I F- II) C .-.0 C CU C
‘4 UI S W SC C UI 5 4 4 5 U. 118 U. 4100 0 C UI 0. C C 4 1 U.S C
05 F- U . S 13) 4 U. a- F -UI F -II1 C .4 5 1* C IC S C I C C C C C I C 4

41 SI.J CN = CO 41 . . . IU .C IC I 5 U .F- C I4 - I U. U S = 0 1 1 U U I 4 U I 4 -U.S
I C C F - S F- U. 510 4 * U. 0 4 4 1 1 1 49 F- S C U U. ,-~ C 0 .0 .4 - a - F - = UI

F- U 0.41-. . 4 4-. 05 I 1 4 I U . 4 .C O 41 CI F- U.S CI 0 .-.41 SF- 0.
U I .0UI U. F -1. F-C U IC UI — * LI- 4 1.1441 I-I -~~ F- 41 I U = 11 S UI 0
0 UI C .. SUI C C 0 F - a - S I S I C U.11I Ci 10 4 1 C C F- UI 4)C) F- S N
I 1 C F-F - OF -OS 0 .1 U F - S 4U . CC I U I U .1 U. C C . 0 4-4 3 SF-UI U IC II’F-

.0 UI 41*5 F-C U C O W 4 3 0 . C S F-5 4 1 4- I S C 1 4C C U. F- 415 S 0 .U C
4 - ’ 4 F- S - U. 0 . 0 U.S 11 C .1 S a- 1 4 C 1 4 I F-C 0 .41 13431.1 CI 41 I C C .1

0- - UI C I S C . ~ UI U. F -1,01.1.3) UI C SC U. F -— UI C U. UI U. U. 43 U. . 4 40
-- I . 0 . 4 1 4 UI C 440. X C 4 1 U . F -3 U 4 9 0 1 4 - C S F- 00 . CI UI 41 UI LII 1 - 4 1 0 4 1 0 .

— C C 0 U. 0. F- 0 UI 0 - 50- 4 1 4 3 04 4 C C- I UI 817 4- 3- . L.. U = 4 9 4 1 4 - 4 UI C -
— U.0 1) 41 410). 43 F-I’) I.IW F-CO 1.I C UI C U . 0 C I U I S U .. - I U IC U . UICI.I 5 S F - C

F - U I 410 C U. U. OF -C F - U I .- 5 1 45 CI. Ca - U. a- — UI UI -‘.U U. U. 0 1.7 5 UI
UIF -C ISC I CF -05 UI 1* 4 1 4 1 .4 -50 0 0 .4 1 0.13 CC) O U IU 5 .1114-C

4) 4 0 . 0 - CI 0. UI CF - t 4) C S U . 4 1 4) U . U . U . U .O U C U. UI U. C UI * 5 W 11. 5 4 . 5* 4
‘4 4 1 4 3 U UI UI UI 00 C U IC . I .U II 1 . C I . . I a.U I UI LU 4 - I .C 11149 U I— S O U C C U .
17’ F-S 00 F - ~~~~~ ..I 4-. a- — C 4 4 1* 51110. U.
— CF -5 4) 5 5 - I l 1 0 .13 S C 1.1 (3 C 4 4 5 CI. C)
I F - 1.’) .4140 U. -- CC U. UI UI 4 5 0.14 * CI 4 11.0.4

mF -415 0 5 5 (3 SU I 4 U .X U I. .C .U I C UI a- I-I U.
0 U. 4-4 C U . F -U. 0. 0 . 4- 4 -UI C

CO I F-0.5’) F -CC UI’ .) CC
0 I UI U. 5 0 5 C 00 0. 1.. U. 1 4 2
IC F- 0 0 — CIa . U . U I C — UI

4)U..-.UI
I. C 0 L11C)
4-I C 0.F-III UI
5 ’ UI

-C
N
—Il

C— ’

4 3—
I
-/C

030000000030 O 0 O 0 0 0 0 0 O 0 0 0 0 0 O 0 0 0 0~~~00 Q 0 O 0 0 O 0000003000300 O 4 1 O 3) 0 3) 0 4 1 0 4 1 O 4) 0 4 1 O 4 1 0 4 1 0 3) O 4 1 0 4 1 0~4 4 0 4 1 0 4 1 O J) 0 4 1 0 4 1 0 3) O 3) 0 4 1 O 4 1 0 4 1 0 4 1 O 4 1 0 4 1
4 9 1 0 4- ’ 4~~~~C O s O s 0 0. . 4 N 0 - 0 - 4 1 4 1 4 9 ’ 0~~ - ’ 4 4 9 4 9O s O s 0 3~~~~~~ ‘4 N1~~~4) 0 - 0 -4 1 4 1 1 0 4 9 - 4 9 4 9 O s O s O 0.-

I X 49~~~~49~~~~~~~C 4 9 I C O s O s O s O s 0 5 O s O s O s O s 0 5 O s) ’0S Os 0 ’ O s O s 0 S 0 0 3 0 Q 0 O 0 0 0 0 OO 0 0 0 0 0 3 .‘ J N N N N N 4 / 4 14) J N N N N N N N N N N N N N N 4 / I I N N ‘4 11-I N ~~~~~ 1’ 1’5 l I 4l1411’lI4 11’11’C1’I1’I1’l144lI41,l1’l1’

—-- -

~

,--— _ _ A

II
156

I.

C 4 4 0 5 - F - S 4 44 9 IC I U . S ... 4) 5 + 4 3 4 3 ‘.CCU. S F- U 5CIUII’)
C F --‘ 41 F- C C 550. W I S C 0 U F- 4)0 * F - a - C C C UI U US

I.. 5 41 0 .44 UI 41 U. 4 4 14 9 0.41 LII U 4 1 5 5 U C S 0 . 4 0 C 4 4-144 -
I.- LII CLI. UI C I S F. C UI 0. F- 414 F- U U .S = 11) 1.) 0. I UI S U. U.
05 0. X LII C 0 41 IC 5 C 51 CI 4 3 5 5 4 1 5 W 5 5 IS LII U. IC . I 1 —
— -— C O 05 * 5 U. UI US = 0 C CO UI 241 C - UI 0. 4 UI U U. 1 41 IS UI 4-
I C UI C I U I0 U . C) C C U U II S C C) C 0 . F - =0 O .U 05 — 5 145 1’~~~~~~ 41

F- 5 S 4 1U . I U .C (.1 41 F - 0 . .’ F - C I UI SI C F - .C C F- 4 SU. 5 9 5-4 1
U 4 F-C — I U. F- C -IF- CI I = -.. C UI S = UI F -45 F - C C C
0 C 0 1 S I C 10 C IC U CF -a-45-C1SI 5 4 5 0 — F- - -CF - I CC U I U
I 1.1 a - I CCU . 4C F -SC .. F-C C O 13 0a- l. ,4 ’ UI 45 0* -Cd . 4 9 011.4-

.0 0. 0U . 4 CF -II C 4 11CC C U S — . 5 0 . 00 49 U’C F. 4 1 . 3 -.~~UI 4

~~4-— 0 I X a-U. CZ UI 0 .4 1 130 U. C 41 UI 14 1120. .0 U. 0 C 41 - U.S = U. F --
0- UI -. U 1400 0 — UI S U. U. LI) U. F- UI 1~)L.1”S 0 . 0 0 . 4 3 43 U. F - O R OW 4-

F -XC 4 - 0 U. S a- F- 01.. 41 a - U I C = F- III 4) 4 1 1 3 14501.) 0 55 C C 14 C CIX
— 5 - 4 1 0 4 3 CC CI I.. O U I U . U OS 0 j - .C IU I C .C 5 U .4) 0 43U .U .C CL I . C I U .
— UI F-CI 41UI C U C) CI l . ,CUI~~4--I U IC L.. U 4 15 S F- U I 1 C U . S 1 4 3 5 5 4 9 9 1 4 5

0 C 1.1 —~~~~ LI) C U. UI C — UI UI .U . UI- ’041 C F- U. U. II) U. UI C C UI UI C C U C
0. U. 0=0 41 UI U.C) CC) C 4 1U I C .4I41 4 . ILl -CS 1 3U.LI) . 0 4 0 0

I.. C F -0 . 4 10 0 . 0 . U F -II. I—I U. RU. CU. C CI = F -S O C 14 UI CC 140(1)5 U. C C U
I.- C) C UI C UI 41 — UI U. C C UI — C U. C U. 0 1) 4 9 4) 5 - CU 2 C IS -U. -- U. = U. 13 .0
175 C 0. UI 0 UI U. U .S W a - L I. C 1I7 14111 F- U UI 14 5 1 4~~~ UI
— 1.1 U.’.) 0 U 1.) C UI .4 4-I S C 4 4 - - I R S 2 44 U U.S 34 1 .4
I F- U. I-a UI C U. UI C C U I4 1 C 0 .0 . U. U S C 0 0 3 5 4 9 0 U CO

II4F -C 5U I . C U. ...49 UI 5 U . I IO 0 . U 0C S 3 IO F- C R U .U .U .C
4) 0 .-. 0 1 5 U 14 1.1 — UI F- U I

C O UI) C U U . X 4 * 5 5 4 1 Ci 4 3 0 . 5
0 1 1. 41) CU. O I U . 4 9 UI Q U l-.U.L.I C-C O

49 — 49 U.0 S C) CI . 4 1 . U I C 14 ... 41
VI

43 2 S F - S C)
4-I C OF- C F . U I

UI 4) U I 5

N

1.I

U N
0—

*
303 00 0 00 0 0 0 30 0 00 0 0 00 30 0 00 00 . 30 0 0 0 00 0 0 3 0 0 3 0 3 0 0 0 0 3 0

0 0 4 1 Q 3) C C IO U~C 3) 0 C) Q 3) O . 1 ’ 0 3) C 4 1 0 3) 0 3) Q 1 1 O 3) O 4 1 O 3) 0 3) 0 4 1 Q C I 0 3) O 3) 0 4 1 0 3) 0 l C) 0 I 4)0 IC)
1)1 CS) CS) II I 0- S I t S 1144949 N-N. C C 3 1 0 5 0 0 — — N N II) 11’ 0 - 0 - LIS 11410 4 9 4 / - N- C 4 9 1 7 5 3 1 0 01 — 4 / 4 N 4/I) CS) 0- 4- LI) 11)49 10 N- I.-

I
• UI (0-I III II) 11 4/I) m (4-C 111 VI CS) (I) I’) II) fl) 4) CS) 4)l11- (‘4 14-C (4-) (1’ .14 (4-I 4/Il 0-I II, rtr 4/fl (91 14-C CS) (I) (‘1 4/I) Ifl 11~~V~ 4) 4) (‘415) .1)-C-C CS) 11) .1) -C rC)
0) Cd)

0) 1’.)
C-I C
0 001 4) 0- 0- 3) 49 4 9’4 - LI) IC) N 49 /5 17’
LI) 43 1-.- 4/. 4/’. N-N- .- I. . N- 0 4/— .-. 1~—
CF - 49 49 14 49 49 1449 .11 III 111 111 41) 49 LII

—~ ~~~~~~~~~~~ - — Lrn ~~~~~~ . - - ~~~~~~~~~~~~~~~~ — -

r”

157

r

e

I
I

U.

I
C

4/fl U.

— U. C)
41 00 C --
0. U. C

14 C C C
(3 0 . C U. -.
C 0. 10 U. = S
0. II U.

S I -- -- 5 U.
0 4 1 - N ” . UI U. -— U.
UI 4114 11 10 0 C (II 0
F - I — .. 1I) C I I, C
4 4) 1 1 F -I l •. F-

L. . F- 5 ” 41. . 41 II = C
- C 41C 4-4 F -5 -- U U. 0

UI U. C 0 .4 1 0 UI 43 0 UI
I I ..U U. UI C UI I F-
UI 43 419 .U. 41 0 U. U. U
I— 4) 114 - 10 UI 0 U. U. 0

0 --F. 0 lI .. 0 43 -- —
UI C Cl) U) .. II) U. 5 -. C -- .

~~ F.
-.1 4 - II CIA C 0 0 44 1 41 UI 41
U C I -- U. II 4) 4U.C C 4-C 5
44 0 141 F- CC .• U. II LII = LII U. U. UI —
0 U. C II 49 0.5 C -. = F - F - -- I

4 1” 0 UI 0 UI SI, UI UI ... UI
LI) C F -U . C I UI 5411 4 4 U N- — =C UI “ .41 U I)) U 0. C UI CS S C IC F- 5
4-I 0 0 -U I Ill 0 U. C I 49 II~~~ C4-. 43 110 0 C 11 .4 - . F. F - - -~~~ U U
C C . S — 0 5. . U. 1~~~~” 4) -- 4 45 U. U.
111 0 0 4 9 I — UI 0- U 4 1 4) 5 UI C 1451-. UI C --

= C 1 1 1 11 C CI C U. IIJUCIU U C Il-IC 0. UI
111 IS F - 4 4-C CI 0 1 1 0 0 5 0 U. LII — C U IS U
54 4 5 CC C F- 0 . ” U. . .C U . 0 5 S = F- OC I.. 0 UI C

o 4-111 UI CC C U U. U. 3 1 4 0 0 . 0 0.— F- - UI
- - IA C II C U. C ...0 F -1400.490. -- 4) 5 C I... 4) — 0.

.. 54 4/f) - - “1 0 0-I UI 54 1 111 43 UI 00W CI I
— 1 4 4 9 U. (4-C (3 W 49 -- II U I U. UI -- -- C C 5 5 1 U. 4-4 U. 11 C --
— I—. . U. II 4 1 C .0 - . I~. UI .3 CCC U. = I 5- 4-4 U. = +

LI.U . 49 -- F -F -II U. U. 4 C C C = 0 .. OW U UI 41
C CU . C 5 0 - - ..~~ 0-- U U I U . U . F - 1 4) -. F- 0 1 UI 4)

N. C 0 4)05 “.4111) 1(9) S U.~~~~~~~~~~IC 5 LII 1 U . ”. N 14 43 I F- UI
C . 4-I U. S U -- II ..L)IS — --. 4-C 1(4 UI II F- CO UI 10 — CC N — U. F- C F-
01 .4114 C 0 . 4 1 41 1 1 C C (4)0. 11 a- .. S S 43 5 43 5 U. II II 41 .0 U. 14
— Z C S C C - . 11) Q5-.F- 0 II .. 0. U ISU. U.5 I S U S C C 0 UI

I 0 4 F- 04/fl II 1 40=0.49 -. - -0 . 43 U IO 5 S O 0 . -. 0 4 1 14 5 4 4 4 4 3 ~1) 0 1 I—
F- C C 414 F -II ..SF-0 l~l =4 / 4) 1 C U . I 1 0 . 1 4 1 0.14 C 04 3 U. UI CI. UI UI 49
0 14 - 0 500. -- U. C a- C C .4) II 0 1.) LI. “ “ C — C IC UI C 0 F -LI. F- 41 F-0 5 1 1 F- 0 UI1CICC4-4C041F- ..U. S - - 3 4 1~~~~~~~ 41C — 4 14 9 49 F- SI 0 0 0-- 41
I 4 14 0. F - - - C CC O U I 551/) II U. U. U. F -LII U I 5 0 05 = C 49 4) 0 . 4 - C 43 C 4 3 I S UI
.0 C X UI a -N O W OF -049W .. 0.1 — U. U U I 4343 I, 4) UI -• 0 1.4- U. C 54 1 1 C
— N. 4 = I~I II 41 F- F -C/) -.41 CU) 0 -- C U. C UI I C U F -C U. UI C 0 ’-.. F- - - U F -S 43

0- 11)49 4) C . . WC 0 . OW ” . “ .44 . U . I I S US U I 41 l.1 43 4 . 1 4 4) 4 1 — - C I X F- -I
= — CI OW C UI -- 11 0 14-1 W O N 0.11) 41 4)U.U.4) F- 41 OF -C 414- CU. 2 I F - 24 9 UI F-

— 4 . 5 UI 41 C C IS) .. II CC CI II C U. U. S F- C U.S UI - - 5 UI C U. 4
— LI C U. UI U. N 0 II S UI “0 UI C U. (3

~~~ 3 •. 130 II UI 14 4 ) 4 3  - U.1414 43 U I II CI .. U. 0. UI U C N C U . 4C 5 C  C C UI C . =0 .  54 )  43 43
1)5 U. U. UI -- U. U. 4 1 4 44 1 0 .  N F -II U 0. 11. UI 4 4  I-.1 — 0 UI — — U . N.  Li — 1 40 .  5 1

I.- 44 . 1 .  = U. a- F-l COO  F -0 C I 4 1 .~ U 4 34 1 3 4 . 1 4 1 44 .  S F -UI = II — 0 - - 5 C UI
I.- U.CU. F- 4 1.1 S OS -I -- F-O CI C U I W U I~~~~~ I.,a- F- U Ia-  — F - . .  II 0 a -  43 (1)
01 14.014 SU .F -I I . I 5 0 4 1 S  1 5 S U I4  U. 4- 0 4 4 4  I - CU .  II CU .  14 44 -- C I’ U. UI 0 4-I
— 144- IC UI - 0  SF-0 0. 0 II CU  0 .440. 0 - S L I S S S S  F- -- 55- 4.) 1443~~ 14 -- F- F-I C UI
I S OX  C-) — F- .U. UI I..I 0 - U I  .1*4 U. CI 43 II LII UI 41 -, 41 C (4 U. U. C d )  49 * S -- =lI-I F. (3W UI LtCU S F -NF- 4 - C F - C -  .. .0 . 1 1 4 22  .11 UI U. LI. * 4 0 . 1  111 1 4  5 .~ CU.  F-
U F- F- I U.S UI II U. --0 -. Il 054) — --0 1 44 1 1 4 4- .  I I I- — — F- — S U. 410  F- F- — UI II F-

C O  434-C C IF --- I .— 3 I— -.0 0 III — 11) ( 4W  U. C 4 II F -C II C 4 4 - 4 14 CC  CI F --. 3 4 9  F-17 I C U. U. UI UI 14 5 II C II 5 C “.C CC . 1 1 11 1 C C C = 5 C -. 41 S -- C UI 0. 0. UI 43 -. U U 13 5 43
~~ 0 C0 F -0 . SCW .~~F- ..U.F-0F-II5.. .. 41 0 . U I 0 0U .U IX V )  U. l.ICC l-.....I 4 .0 — 5 4 0 .  UI 0.

U I U . U 1 4F -5C.I) U I C I I I 1 7II C I ..F-OC 0 . U . OC U .C C  1.1 -.5 UI -U I 0 0  4 - 4 4 )  UI ~.5CI) F-
1.. 43 CC 5 C 5 U .C 0 . 1 4 5. .C U C IUU .  3U .U I U . O .I CU . C C )  4 3 1 4 5 ( 3  051.1W 5 I.. C ( 3  C C C I  43
4-1 5 U I5 4 U .4 - . I14 3U I5 CU I CU IS I . I4-4- U. 0 C ’ 4 - 1 3 C U C )0 U .  5 1 ) 0U I  C U I4 - C4-4 1 0 0U .  C X C  0
>~~ UI .I~~~~.41 . I . I—5-41 .C Cd) V) 0.U. U. .U...UI Ll- . .U . 4 9  U . —U .C  U . U . U I  U.49 U...0. —

CS)
N

‘4
CI’)
U. N-
0—I
1

LI)
0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 30 00 3 0 0 0 0 0 0 00 0 0 0 3 0 0 3 00 0 0 00

3 0 4 1 0 4 1 3 3 ) 0 4 10 4 1 0 C I 0 4 1 0 4 1 0 3 ) 0 4 1 0 4 1 0 4 1 0 4 1 0 4 1 33 ) O 4 1 0 4 1 0 3) 0 4 1 O 4 1 0 4 1 0 C I 0 C I0 1 A 0 4 1 0 3 )
— 4 9 4 9 O s 3 1 0 0~~~~~~~ N N 4 ) C S ) S 4 9 4 1 4 1 1 0 1 0 N- N . 4 9 O 3 1 0 5 0  0~~~~~~~ NC S I I V I 4 0 - 0 -- 3 ) 4 1 1 0 1 0 N . N . C 4 9 O s 0’ 0 0~~~~~~~ NN C S )4)
II 4) 1 f l 0 - 0 - 0 - S * 0 - S 0 - 0 - 0 - S 0 - 0 - 0 - 0 - 4 9 0 - 5 4 9 5 4 1 U ) 3 ) U ) 4 1 4 1 4 1 4 1 4 1 U )u 4 1 4 1 I A 3 ) 4 1 4 1 3) I A 4 1 - O 1 0 4 9 4 9 4 9 . 0 4 9 4 9
• UI CC 1VI1) 4/IC (CC (I) CC) 4/fl (1) IC) 4/fl 4/fl IC) CS) (I) 4/fl CS) 4/fl III Cl) 4/fl 4/4-I CS) 4/I) 4/fl Cl) 4/fl Y) IC) CC CS) (CC 151 4/4-C IC) ICC ICC 4/4-I IC) (I) 4/fl IC) Cl) 4)15) (91- 4/CC (4)11)
0 )4 1

W I N
‘.43
~~0U I  49 0 3 — — N -N
4.143  N 49 C C C C C
C C.. ~) 49 8141 C 14 49 UI

—

~

-

~

- - -~~~~~~~~~~ ----—- - - - -- -- —-~~~ - .- —~~~-



. -

‘N- 158

~

-S 1.1W
4- -— 4 3 ( 3
-S -S 4 4
~ a I I

• 0 -S UI-I
C U S --F-F-

0. C W O O
4 U -- 4 30 0
F. U. U. C
4 C I )  1-.- -.
C 4-. C .11-S-S

4 I 5- 00C 1.1
14-I ~~~~~~F - 0- -

— 4- 43 101.0
.1) 0 - - 1 .-

III 0 4 4 4 4
4-) ..
U. U. U.
5 11) 1) 11

U. 4 1055
U. I U.U.

— 1 UI F-F-
O 4- F - U IC
411 IS 43 -— —
2 C 0 CF-I-I

0- UI 14 -- 1114141
U 5 -. UI

I U. UI -S . 1 3” .  “ .UI~~~~~~— 0. U. 4- UI C UI U. — UI U.
4-I (1) -S C)1I)U.I3F-I X
0. 0. II. 4 4 - 4 - C C) 4 9 4 1 4 - 1 1 4 - I
.0 I U. 1 F-X 4X U IF .F -

-- 0. 0 U I4 3 4 - 4 - IU I N-~~..C) UI 11-1 .0 F-0*- UI I.- I.I ~~~~~’C_i 4- 43 OF -0 I 0 0
0. 1 1 4 0  0 ” . 0 4 3 3U I.

141 C a a — 0 F-IX
13 ... 411 -—49 .. ~~~~~~~~~~C F. = 5 U. . 

~ -S - U . 1 1  UI U.
4 143 4-. Il l 41 1 0 2 . 0’ .C ) O F- F -

“-4-.I 0 = U •I1) •.0 C U I 5
4/ UIF -N I.. 1.) CC) 1 . I5—.

4 3 4 3 ”. II U .0 . C IU IW F- F -
4 0 5 N a C iO W C F- I 3Cd) CI)
1 * 4) II -S “ .X Q F - U . OU I . 1 14-, --

C C CU. C_ I C F-C.-. 5 U.
F-..II) C 4) 0 1 30- I - Cl  5- 411 W C)
4 3 0 -C 4-C C .0CC4.-II0..CIZI 4
0 .Ia) 49 X - XF -C ..1 UI I

4-I) 0. 0. .1 — UI . 4 15 . 0  105F-F- UI
-—CC II. 41. 4- F- C F -UI I— .111 F-
-SC 4 3  0. .~ O U I O 4 - . 5 F - X C C4 - 4  43
0 -C C  II IS 41 CO F -O O I- . 5U IU I U I  --0

C 111 III 43 0F-0 l~~ I..I1.IS
I. I..5- ..U. “0.. 430 F-F-U). -
U.F.5 .V) F--S 4-.5 ..Q Q 1 4 3 4 3
UCC- I 0 .41 W 4 1  49 “.0 4-5 1U I00 N
SUIF. Ill C 14 = ~-S .. 4- .. U. U. U —
4 ) 5 - 4 3 . -  4341 ) 4 ) 11 ) 0  44) .. 1F --— ..4 .l U.LI 4 3 0 W S  F -SC - -U .V ) 4-
5-0  49IS  04- CU I 4 1 C / )U . . .F-0 I C )U I
C - - 4 3 U .  U. 5 F-U . 4 1 4 1 4 1 2  -. -. -‘F-
UI”..~~~~~~4 4 - _ I  49.0411.14-)WUI ..F-F-F-U.

0 F - -SO  Ul~l 1.1 49 F-41OU. 41F-4 3 4 3 5C )
II) 4 3 0  - - U . S  UI 0 . 5 1 1 1 0 0 1 / ) 4 3 4 -  0 .U .I~~~1*0”I1)F.U. 4)5 U I U I I J C0 U . 0 ” 4 3 O F- F -
— II) I.4 ..I V) C III F . 0 0 . S 4 )  4 . 5 5 3 5
— ..5U I5 . .  494 - )  F-O S  0.0-.05 0UI

X 4 1 4 )  1400.2 CI S0 . F-4 -•  F-
O C  CI F- U. 0 5 0 . 0 4 3  ..43

N -.49540 — —  F..—2UI0 - - C R 5 - S O
N- LII Ill 2 4-  F - -S 0 F . — C 4 1 =C 0 0
0-I I 44 I I .F .X  43 4 3 0  U I C4 1 F . 0 U .F .. IU I. .
— U IC L I . U I U .  2 0 .- F-OOl-l U F-F- IS
I F-OOSZ F-Ill U . 0 543F.541IJ000

F- * 4 9 4 3 5 -  55 ..X 0 F . S 0 U . 4 1 0 4 3 1- I-
U 145 UI (.. -S U I C V ) F- 4 3S I I )  = CU U.
0 U X* I . I  0 * F-F-54J)SU.0F-F-C_iI
I 0 0 51 1  0.1 411 . 1 5 5- 0 . 0 4 1 4 1 4 - U I

10 5 0.4-4-UI = II .55 UI 14) U .S  5 54 - F-
N 00F-0 0 C__iS U .OU IU .  SSU.I.YUIF-
0- 00.C 50 CUI OC~~I 4 - 4=
-- 55 3  49 - C  O F-UCU. SIIU.U.U
— S 1IICCCC F- C  X 4 3 4* F ., - I 5U . U I4 3F .
— 0 OCF.U.UI 4 1 4  0 . U I 0 .10 F-F - I 1 .F- U

C 1141040. 0U .  0 U . 5 0 0 I 1 C I V ) W O ( 3
U.43R4- . I  U 0 0 4 0 04 9 0 1 4 4 4 4 4 4 10  --

N F -IC I-.IU.U. 0.0. UU .C U . 4 C 14 14 1 0  4...
N 0 0 0 1 2U I ” . ZC-.I . . S S 1 0 1 0 1 1 0 0  - — 2  1/5
CC 1110
— F- F -F - F - F- F -C iF -F . C ) F-F -F -F . F -* - I4-I F. I-. F-C) F- a- l.a

I 43 0 4 C C 0 4 1 4* 4 4 - C O C C C C M C C O C C C C C I ()4 04 04 C 4-C ”.V)F-CS)F -0 IIIU.U.U.U.IU.I.J1U.Il1U.U.I I IJU.U.U.U.U.1U.W*4
0 F.F-F-F-F-UIF-F-..IF-F-F-4.F-F-F-F- 5- F-UIF-41..IU. --

C O  F -F-F .F .F -F .F -F .F .F -F -F-F -F -F-F -F .F .F-F -F -F -0  014
0 I o

10 U . 5 0 00 0 0 0 0 000 0 0 0 0 0 000000 U 13 U I0 . .
0 . 4 - 1 1  41140

I~ 4113 0 00
• CIII * 0 ..
44 U I4 9  1110 5-

— OF-
-C 00.
N XCI..
- U I U I O  43
N LI)CCC )  C CI

U . N  2 43 C
U. UI1 4/) F-

— 4.1 0
Cl) = 14

0 0 0 0 0 0 0 L 1 5 0 0 3 ) 0 00 0 0 0 0 0 0 0 3 0 0 0 0 0 0  LI F-
0 0 C I 0 I A 0 4 ) O N I A ON 3 ) 0 C I 0 U ) 0 C I 0 I A 0 U ) 0 U ) 0 U ) 0 3 )  F- 14
— 0 - 0 - 4) 4 ) 4 9 1 0 4 - - N -N .  C C C  04 3 1 0 0 I  .- N 11-C CS) 0 - 0 - U)3)~0 4 9  1 43
I I  4 9 4 9 1 04 9 1 0 1 0 1 0 1 0 1 0 4 0 4 0 4 9 1 0 1 0 ( — N- N -N -N . N -N N . N N - N - N- ( -(- S
•U I  I4)4/ f lIS) 1C) 1l) lV) Cfl (fl 4/I) 4/I) 4/fl 4/fl fl) CS) IC) 4/C) 4/fl IVI 14 41
0)41 5

F- 3
4-0 1)1 14 54443
00  C 14
01 0-1- 4)
U.C 49 ON  — 14 3
O F - C  

i_:__. -~~~~~~~~~~~~~



159

LIST OF REFERENCES

(AND67a] Anderson, D. W I ,  F. 3. Sparacio , and R. M. Tomasulo, “The IBM
System 360/Model 91 : Machine Philosophy and Instruction
Hand ling, ” IBM J. of Res. and Dev. , Vol. 11, pp. 8-24 ,
January 1967.

[AND67b ] Anderson , S. F. ,  3. C. Earle ,  R. E. Goldschmidt , and D. M. Powers ,
“The IBM System 360/Model 91: Floating - Point Execution
Unit , ” 3. of Res. and Dev., Vol. 11, pp. 34-53 , January 1967.

[BAL72I Ballance , R. S I ,  3. A. Cocke , and H. G. Koisky , “The Lookahead
Unit , ” in Planning a Computer System, McGr aw-Hill , 1962.

[BEL71] Bell , C. G. and A. Newell , Computer Structures: Reading s and
Examples, Mc Graw-Hill , 1971.

[BHA76 I Bhandarkar, D. P., “A Hierarchy of Analytic Models for Comp lex
Computer Systetns ,”The European Computing Conference on Computer
Systems Evaluation, September 1976.

[B 1R73] Birtwistle , G., et al . ,  SIMULA Begin, Auerbach, 1973.

fBIR74J Birtwistle, G. and 3. Palm-a , SThIIJLA Language Handbook - Part 1,
DECUS Program Library , 1974.

4 [B0L~7] Boland , L. T . ,  G. D. Granito , A. V. Marcotte , B. V. Messina ,
and J. W. Smith , “The IBM System 360/Mode l 91: Storage System ,”
IBM J. of Res. and Day . , Vol. 11, pp. 54-6 8, January 1967.

[BR072 1 Browne , 3. C., K. M. Chandy , R. N. Brown , T. W. Keller,
D. F. Towsley , and C. W. Dissly , “Hierarchical Techniques for
the Development of Realistic Models of Complex Computer Systems,”
Proc. of the IEEE, Vol. 63 , ~~~ 966-975 , June 1975.

(DEN74 J Dennis, J. B and D. P. ?1isunas, “A Preliminary Architecture for
a Basic Data-flow Processor,” Project MAC Computation Structures
Group Memo 102, M t .T . , August 1974 .

[DRA66 ] Draper , N. R. and H. Smith , A~~ lied Regression Analysis , John
Wiley , 1966 .

(GRE69] Gregory , R. T. and D. L. Karney, A Collection of Matrices for
Testing Computational Algorithms, Wiley-Interscience , 1969.

[1NS75) INSL Library 2, Edition 5, International Mathemat ical and
Statistical Libraries , Inc ., 1975.

_ _



11
-. 160

-- [IWM76a] Kumar, 3., “Performance Evaluation of a Highly Concurrent Computer
by Deterministic Simulation,” Coordinated Science Laboratory Report
R-7l7, University of Illinois, February 1976.

- (KUM76bJ Kumar, B. and E. S. Davidson, “Performance Evaluation of Highly
— - Concurrent Computers by Simulation ,” submitted for publication

in the Comm. ACM.

(SEK72] Sekino, A., “Performance Evaluation of Multiprogrammed Time-Shared
- Computer Systems,” Project MAC Tech. Rep. 103, M.I.T., September

1971.

• [SV076] Svobodova , L., Computer Performance Measurement and Evaluation

- 
Methods: Analysis and Applications, Elsevier, 1976.

[T ct~ 7] Tomasulo, R. M., UAU Efficient Algorithm for Exploiting Multiple
Execution Units,” IBM 3. of Res. and Day., Vol. 11, pp. 25-33 ,
January 1967.

[TJA7O] Tja den , G. S. and M. 3. Flynn, “Detection and Parallel Execution
of Independent Instructions, ” IEEE - TC, Vol. C-19 , pp. 889-895 ,
October 1970.

[TSA72] Tsao , F. T., L. W. Comeau , and B. H. Margolin , “A Multi-factor
Paging Experiment , ” Statist ical Computer Performance Evaluation,
Academic Press , 1972 .

[ZEI76 J Zeigler , B. P. ,  Theory of Modelling and Simulation, Wiley-
Interscience , 1976 . 



-
- 161

VITA

Balasubramanian Kumar was born in Pudukkottai, India on January 30, ¶

1951. He received a B. Tech. degree in Electrical Engineering (Electronics)

- 

from the Indian Institute of Technology, Madras , India in 1973. At the

Indian Institute of Technology , he received the President of India Prize

for the best academic record in all branches of engineering in the graduating

- 
class of 1973. In 1976 he received an M.S. degree in Computer Science from

the University of Illinois at Urbana-Champaign. From 1973 to 1977, he was

- 
employed as a graduate research assistant at the Coordinated Science

Laboratory of the University of Illinois at Urbana-Champaign.

4


